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This paper considers tests and confidence sets (CSs) concerning the coefficient
on the endogenous variable in the linear IV regression model with homoskedastic
normal errors and one right-hand side endogenous variable. The paper derives
a finite-sample lower bound function for the probability that a CS constructed
using a two-sided invariant similar test has infinite length and shows numerically
that the conditional likelihood ratio (CLR) CS of Moreira (2003) is not always “very
close,” say 0�005 or less, to this lower bound function. This implies that the CLR
test is not always very close to the two-sided asymptotically-efficient (AE) power
envelope for invariant similar tests of Andrews, Moreira, and Stock (2006) (AMS).

On the other hand, the paper establishes the finite-sample optimality of the
CLR test when the correlation between the structural and reduced-form errors, or
between the two reduced-form errors, goes to 1 or −1 and other parameters are
held constant, where optimality means achievement of the two-sided AE power
envelope of AMS. These results cover the full range of (nonzero) IV strength.

The paper investigates in detail scenarios in which the CLR test is not on the
two-sided AE power envelope of AMS. Also, theory and numerical results indicate
that the CLR test is close to having the greatest average power, where the average is
over a specified grid of concentration parameter values and over a pair of alterna-
tive hypothesis values of the parameter of interest, uniformly over all such pairs
of alternative hypothesis values and uniformly over the correlation between the
structural and reduced-form errors. Here, “close” means 0�015 or less for k ≤ 20,
where k denotes the number of IVs, and 0�025 or less for 0<k≤ 40.

The paper concludes that, although the CLR test is not always very close to the
two-sided AE power envelope of AMS, CLR tests and CSs have very good overall
properties.
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1. Introduction

The linear instrumental variables (IV) regression model is one of the most widely used
models in economics. It has been widely studied and considerable effort has been made
to develop good estimation and inference methods for it. In particular, following the
recognition that standard two stage least squares t tests and confidence sets (CSs) can
perform quite poorly under weak IVs (see Dufour (1997), Staiger and Stock (1997), and
references therein), inference procedures that are robust to weak IVs have been de-
veloped, for example, see Kleibergen (2002) and Moreira (2003, 2009). The focus has
been on models with one right-hand side endogenous variable, because this arises most
frequently in applications, and on over-identified models, because Anderson and Ru-
bin (1949) (AR) tests and CSs are robust to weak IVs and perform very well in exactly-
identified models.

Andrews, Moreira, and Stock (2006) (AMS) develop a finite-sample two-sided AE
power envelope for invariant similar tests concerning the coefficient on the right-hand
side endogenous variable in the linear IV model under homoskedastic normal errors
and known reduced-form variance matrix. They show via numerical simulations that
the conditional likelihood ratio (CLR) test of Moreira (2003) has power that is essentially
(i.e., up to simulation error) on the power envelope. Chernozhukov, Hansen, and Jans-
son (2009) show that this power envelope also applies to noninvariant tests provided
the envelope is for power averaged over certain direction vectors in a unit sphere. Cher-
nozhukov, Hansen, and Jansson (2009) also showed that the invariant similar tests that
generate the two-sided AE power envelope are α-admissible and d-admissible. Miku-
sheva (2010) provided approximate optimality results for CLR-based CSs that utilize the
testing results in AMS. Chamberlain (2007), Andrews, Moreira, and Stock (2008), and
Hillier (2009) provided related results.

It is shown in Dufour (1997) that any CS with correct size 1 − α must have positive
probability of having infinite length at every point in the parameter space. The AR and
CLR CSs have this property. In fact, simulation results show that in some over-identified
contexts the AR CS has a lower probability of having an infinite length than the CLR CS
does. For example, consider a model with one right-hand side endogenous variable, k
IVs, a concentration parameter λv (which is a measure of the strength of the IVs), ho-
moskedastic normal errors, a correlation ρuv between the structural-equation error and
the reduced-form error (for the first-stage equation) equal to zero, and no covariates.
When (k�λv) equals (2�7), (5�10), (10�15), (20�15), and (40�20), the differences between
the probabilities that the 95% CLR and AR CSs have infinite length are 0�013, 0�027, 0�037,
0�043, and 0�049, respectively.1 In fact, one obtains positive differences for all combi-
nations of (k�λv) for k = 2�5�10�20�40 and λv = 1�5�10�15�20. Hence, in these over-
identified scenarios the AR CS outperforms the CLR CS in terms of its infinite-length

1See Table SM-I in the Online Supplementary Material 2 (Andrews, Marmer, and Yu (2019)) for other
parameter combinations.
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behavior, which is an important property for CSs. Similarly, one obtains positive (but
smaller) differences also when ρuv = 0�3 for the same range of (k�λv) values. On the
other hand, for ρuv = 0�5�0�7, and 0�9, the differences are negative over the same range
of (k�λv) values.

The AR and CLR CSs are based on inverting AR and CLR tests that fall into the class
of invariant similar tests considered in AMS. Hence, the simulation results for ρuv = 0�0
and 0�3 raise the question: How can these results be reconciled with the near optimal
CLR test and CS results described above? In this paper, we answer this question and
related questions concerning the optimality of the CLR test and CS.

The contributions of the paper are as follows. First, the paper shows that the prob-
ability that an invariant similar CS has infinite length for a fixed true parameter value
β∗ equals one minus the power against β∗ of the test used to construct the CS as the
null value β0 goes to ∞ or −∞. This leads to explicit formulae for the probabilities that
the AR and CLR CSs have infinite length. This result is established in the paper for ho-
moskedastic errors. It is extended in Section 24 in the Online Supplementary Material 1
(Andrews, Marmer, and Yu (2019)) to the case of heteroskedastic and autocorrelated er-
rors.

Second, the paper determines a finite-sample lower bound function on the proba-
bilities that a CS has infinite length for CSs based on invariant similar tests. This lower
bound is obtained by using the first result and finding the limit of the power bound in
AMS as the null value β0 goes to ∞ or −∞. The lower bound function is found to be very
simple. It is a function only of |ρuv|, λv, and k. These results allow one to compare the
probabilities that the AR and CLR CSs have infinite length with the lower bound.

Third, simulation results show that the AR and CLR CSs are not always close to the
lower bound. This is not surprising for the AR CS, but it is surprising for the CLR CS in
light of the AMS results. The probabilities that the CLR CS has infinite length are found
to be off the lower bound function by a magnitude that is decreasing in |ρuv|, increasing
in k, and are maximized over λv at values that correspond to somewhat weak IVs, but
not irrelevant IVs. For ρuv = 0, the paper shows (analytically) that the AR test achieves
the lower bound function. Hence, for ρuv = 0, the probabilities that the CLR CS has in-
finite length exceed the lower bound by the same amounts as reported above for the
difference between the infinite length probabilities of the CLR and AR CSs for several
(k�λv) values. On the other hand, for values of |ρuv| ≥ 0�7, the CLR CS has probabilities
of having infinite length that are close to the lower bound function, 0�010 or less and
typically much less, for all (k�λv) combinations considered. For values of |ρuv| ≥ 0�7, the
AR CS has probabilities of having infinite length that are often far from the lower bound.
For |ρuv| = 0�9 and certain values of λv, they are as large as 0�089, 0�207, 0�288, 0�357, and
0�426 for k= 2, 5, 10, 20, and 40, respectively.2

The AMS numerical results did not detect scenarios where the CLR test’s power is off
the two-sided power envelope because AMS focused on power for a fixed null hypothe-
sis and a wide range of alternative values, whereas the probability that a CS has infinite
length depends on the underlying tests’ power for a fixed true parameter and arbitrar-

2See Table SM-I in the Online Supplementary Material 2.
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ily distant null hypothesis values. As discussed in Section 4 below, power in these two
scenarios is different.

Fourth, the paper derives new optimality properties of the CLR and Lagrange mul-
tiplier (LM) tests when ρuv → ±1 or ρΩ → ±1 with other parameters fixed at any values
(with nonzero concentration parameter), where ρuv → ±1 denotes ρuv → 1 or ρuv → −1
and likewise for ρΩ → ±1. In particular, optimality holds for fixed finite nonzero values
of the concentration parameter. Optimality here is in the class of invariant similar tests
or similar tests and employs the two-sided AE power envelope of AMS. These results are
empirically relevant because they are consistent with the numerical results that show
that the CLR test is close to the power envelope when |ρuv| is large, namely, 0�7 and 0�9,
but not extremely close to one.

These optimality results hold because taking ρuv → ±1 or ρΩ → ±1 with other pa-
rameters fixed drives the length of the mean vector of the conditioning statistic T , as de-
fined in AMS and below, to infinity. This is the same mechanism that yields asymptotic
optimality of the CLR and LM tests when the concentration parameter goes to infinity
as n→ ∞ (i.e., under strong or semistrong IVs). The results show that arbitrarily large
values of the concentration parameter are not needed for limiting optimality of the CLR
and LM tests.

Fifth, we simulate power differences between the two-sided AE power envelope of
AMS and the power of the CLR test for a fixed alternative value β∗ and a range of finite
null values β0 (rather than the power differences as β0 → ±∞ discussed above). These
power differences are equivalent to the false coverage probability differences between
the CLR CS and the corresponding infeasible optimal CS for a fixed true value β∗ at in-
correct values β0. We consider a wide range of (β0�λv�ρuv�k) values. The maximum
(over β0 and λv values) power differences range between [0�016�0�061] over the (ρuv�k)
values considered. On the other hand, the average (over β0 and λ values) power dif-
ferences only range between [0�002�0�016]. This indicates that, although there are some
(β0�λ) values at which the CLR test is noticeably off the power envelope, on average the
CLR test’s power is not far from the power envelope. The maximum power differences
over (β0�λ) are found to increase in k and decrease in |ρuv|. The λv values at which the
maxima are obtained are found to (weakly) increase with k and decrease in |ρuv|. The
|β0| values at which the maxima are obtained are found to be independent of k and
decrease in |ρuv|.

Sixth, the paper considers a weighted average power (WAP) envelope with a uniform
weight function over a grid of concentration parameter values λv and the same two-
point AE weight function over (β�λ) as in AMS. We refer to this as the WAP2 envelope. We
determine numerically how close the power of the CLR test is to the WAP2 envelope. We
find that the difference between the WAP2 envelope and the average power of the CLR
test is in the range of [0�001�0�007] over all of the (β0�β∗�ρuv�k) values that we consider.
Hence, the average power of the CLR test is quite close to the WAP2 envelope.

Other papers in the literature that consider WAP include Wald (1943), Andrews and
Ploberger (1994), Andrews (1998), Moreira and Moreira (2013, 2015), Elliott, Müller, and
Watson (2015), and papers referenced above. The WAP2 envelope considered here is
closest to the WAP envelopes in Wald (1943), AMS, and Chernozhukov, Hansen, and
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Jansson (2009) because the other papers listed put a weight function over all of the pa-
rameters in the alternative hypothesis, which yields a single weighted alternative den-
sity. In contrast, the WAP2 envelope, Wald (1943), AMS, and Chernozhukov, Hansen, and
Jansson (2009) consider a family of weight functions over disjoint sets of parameters in
the alternative hypothesis, which yields a WAP envelope.

In conclusion, based on our findings, we recommend use of the CLR test and CS in
settings with homoskedastic uncorrelated errors. The CLR CS has higher probability of
having infinite length than the AR CS in some scenarios, and the CLR test is not a UMP
two-sided invariant similar test. But, no such UMP test exists and the CLR CS is close
to the two-sided AE power envelope for invariant similar tests when |ρuv| is not close to
zero and is close to the WAP2 envelope for all values of |ρuv|. In settings where the errors
may be heteroskedastic or autocorrelated, tests exist that reduce to the CLR test under
homoskedastic and uncorrelated errors, for example, see Andrews, Moreira, and Stock
(2004), Andrews and Guggenberger (2018), and I. Andrews and Mikusheva (2016). Other
tests designed for the heteroskedastic and/or autocorrelated errors are given in Moreira
and Moreira (2015) and I. Andrews (2016).

Finally, we point out that the results of this paper illustrate a point that applies more
generally than in the linear IV model. In weak identification scenarios, where CSs may
have infinite length (or may be bounded only due to bounds on the parameter space),
good test performance at a priori implausible parameter values is important for good CS
performance at plausible parameter values. More specifically, the probability under an
a priori plausible parameter value β∗ that a CS has infinite length depends on the power
of the test used to construct the CS againstβ∗ when the null value |β0| is arbitrarily large,
which may be an a priori implausible null value.

For the computation of CLR CSs, see Mikusheva (2010). For a formula for the power
of the CLR test, see Hillier (2009).

The paper is organized as follows. Section 2 specifies the model. Section 3 defines
the class of invariant similar tests. Section 4 contrasts the power properties of tests in
the scenario where β0 is fixed and β∗ takes on large (absolute) values, with the scenario
whereβ∗ is fixed andβ0 takes on large (absolute) values. Section 5 provides a formula for
the probability that a CS has infinite length. Section 6 derives a lower bound on the prob-
ability that a CS constructed using two-sided invariant similar tests has infinite length.
Section 7 reports differences between the probability that the CLR CS has infinite length
and the lower bound derived in the previous section. Section 8 proves the optimality re-
sults for the CLR test described above. Section 9 reports differences between the power
of CLR tests and the two-sided AE power bound of AMS for a wide range of parame-
ter configurations. Section 10 provides comparisons of the power of the CLR test to the
WAP2 power envelope described above.

Proofs and additional theoretical results are given in the Online Supplementary Ma-
terial 1. Additional numerical results are given in the Online Supplementary Material 2.

2. Model

We consider the same model as in Andrews, Moreira, and Stock (2004, 2006) (AMS04,
AMS) but, for simplicity and without loss of generality, without any exogenous variables.
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The model has one right-hand side endogenous variable, k instrumental variables (IVs),
and normal errors with known reduced-form error variance matrix. The model consists
of a structural equation and a reduced-form equation:

y1 = y2β+ u and y2 =Zπ + v2� (1)

where y1� y2 ∈ Rn and Z ∈ Rn×k are observed variables; u�v2 ∈ Rn are unobserved er-
rors; and β ∈R and π ∈Rk are unknown parameters. The IV matrix Z is fixed (i.e., non-
stochastic) and has full column rank k. The n× 2 matrix of errors [u : v2] is i.i.d. across
rows with each row having a mean zero bivariate normal distribution with positive vari-
ances.

The two corresponding reduced-form equations are

Y := [y1 : y2] := [Zπβ+ v1 :Zπ + v2] =Zπa′ + V � where

V := [v1 : v2] = [u+ v2β : v2]� and a := (β�1)′�
(2)

The distribution of Y ∈ Rn×2 is multivariate normal with mean matrix Zπa′, indepen-
dence across rows, and reduced-form variance matrix Ω ∈ R2×2 for each row. For the
purposes of obtaining exact finite-sample results, we suppose Ω is known. As in AMS,
asymptotic results for unknown Ω and weak IVs are the same as the exact results with
knownΩ. The parameter space for θ= (β�π′)′ is Rk+1.

We are interested in tests of the null hypothesisH0 : β= β0 and CSs for β.
As shown in AMS, Z′Y is a sufficient statistic for (β�π′)′. As in Moreira (2003) and

AMS, we consider a one-to-one transformation [S : T ] of Z′Y :

S := (
Z′Z

)−1/2
Z′Yb0 · (b′

0Ωb0
)−1/2 ∼N(

cβ(β0�Ω) ·μπ� Ik
)

and

T := (
Z′Z

)−1/2
Z′YΩ−1a0 · (a′

0Ω
−1a0

)−1/2 ∼N(
dβ(β0�Ω) ·μπ� Ik

)
� where

b0 := (1�−β0)
′� a0 := (β0�1)′� μπ := (

Z′Z
)1/2

π ∈Rk�
cβ(β0�Ω) := (β−β0) · (b′

0Ωb0
)−1/2 ∈R�

dβ(β0�Ω) := b′Ωb0 · (b′
0Ωb0

)−1/2 det(Ω)−1/2 ∈R� and b= (1�−β)′�

(3)

As defined, S and T are independent. Note that S and T depend on the null hypothesis
value β0.

3. Invariant similar tests

As in AMS, we consider tests that are invariant to orthonormal transformations of [S :
T ], that is, [S : T ] → [FS : FT ] for a k× k orthogonal matrix F . The 2 × 2 matrix Q is a
maximal invariant, where

Q= [S : T ]′[S : T ] =
[
S′S S′T
S′T T ′T

]
=

[
QS QST
QST QT

]
and Q1 =

(
S′S
S′T

)
=

(
QS
QST

)
� (4)
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for example, see Theorem 1 of AMS. Note thatQ1 is the first column ofQ and the matrix
Q depends on the null value β0.

The statisticQ has a noncentral Wishart distribution because [S : T ] is a multivariate
normal matrix that has independent rows and common covariance matrix across rows.
The distribution ofQ depends on π only through the scalar

λ := π ′Z′Zπ ≥ 0� (5)

Leading examples of invariant identification-robust tests in the literature include
the AR test, the LM test of Kleibergen (2002) and Moreira (2009), and the CLR test of
Moreira (2003). The latter test depends on the standard LR test statistic coupled with a
“conditional” critical value that depends onQT . The LR, LM, and AR test statistics are

LR := 1
2

(
QS −QT +

√
(QS −QT)2 + 4Q2

ST

)
�

LM :=Q2
ST /QT = (

S′T
)2
/T ′T� and AR :=QS/k= S′S/k�

(6)

The critical values for the LM and AR tests are χ2
1�1−α and χ2

k�1−α/k, respectively, where

χ2
m�1−α denotes the 1 − α quantile of the χ2 distribution withm degrees of freedom.

A test based on the maximal invariant Q is similar if its null rejection rate does
not depend on the parameter π that determines the strength of the IVs Z. As in Mor-
eira (2003), the class of invariant similar tests is specified as follows. Let the [0�1]-
valued statistic φ(Q) denote a (possibly randomized) test that depends on the maxi-
mal invariant Q. An invariant test φ(Q) is similar with significance level α if and only if
Eβ0(φ(Q)|QT = qT )= α for almost all qT > 0 (with respect to Lebesgue measure), where
Eβ0(·|QT = qT ) denotes conditional expectation given QT = qT when β = β0 (which
does not depend on π).

The CLR test rejects the null hypothesis when

LR > κLR�α(QT )� (7)

where κLR�α(QT ) is defined to satisfy Pβ0(LR > κLR�α(QT )|QT = qT )= α and the condi-
tional distribution of Q1 = (QS�QST )

′ given QT is specified in AMS and in (26) in the
Online Supplementary Material 1.

The invariance condition discussed above is a rotational invariance condition. In
some cases, we also consider a sign invariance condition. A test that depends on [S :
T ] is sign invariant if it is invariant to the transformation [S : T ] → [−S : T ]. A rotation
invariant test is also sign invariant if it depends on QST only through |QST |. Tests that
are sign invariant are two-sided tests. In fact, AMS shows that the two-sided AE power
envelope is identical to the power envelope generated by sign and rotation invariant
tests; see (4.11) in AMS.

For simplicity, we will use the term invariant test to mean a rotation invariant test
and the term sign and rotation invariant test to describe a test that satisfies both invari-
ance conditions.

The paper also provides some results that apply to tests that satisfy no invariance
properties. A test φ([S : T ]) (that is not necessarily invariant) is similar with significance
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level α if and only if Eβ0(φ([S : T ])|T = t)= α for almost all t (with respect to Lebesgue
measure), where Eβ0(·|T = t) denotes conditional expectation given T = t when β= β0

(which does not depend on π); see Moreira (2009).

4. Power against distant alternatives compared to distant null hypotheses

In this section, we consider the power properties of tests when |β∗ − β0| is large, where
β∗ denotes the true value of β. We compare scenario 1, where β0 andΩ are fixed, and β∗
takes on large (absolute) values, to scenario 2, where β∗ andΩ are fixed, and β0 takes on
large (absolute) values. Scenario 1 yields the power function of a test against distant al-
ternatives. Scenario 2 yields the false coverage probabilities of the CS constructed using
the test for distant null hypotheses (from the true parameter value β∗). We show that,
while power goes to one in scenario 1 as β∗ → ±∞ for fixed β0 for standard tests, it is
not true that power goes to one in scenario 2 as β0 → ±∞ for fixed β∗. Hence, the power
properties of tests are quite different in scenarios 1 and 2.

The numerical power function and power envelope calculations in AMS are all of
the types in scenario 1. The difference in power properties of tests between scenarios 1
and 2 suggests that it is worth exploring the properties of tests in scenarios of the latter
type as well. We do this in the paper and show that the finding of AMS that the CLR test
is essentially on the two-sided AE power envelope and is always at least as powerful as
the AR test does not hold when one considers a broader range of null and alternative
hypothesis values (β0�β∗) than considered in the numerical results in AMS.

It is convenient to consider the AR test, which is the simplest test. The AR test rejects
H0 : β= β0 when S′S > χ2

k�α. When the true value isβ, the distribution of the S′S statistic

is noncentral χ2 with noncentrality parameter

c2
β(β0�Ω) · λ (8)

and k degrees of freedom. For the fixed null hypothesisH0 : β= β0, fixedΩ, and fixed λ,
the power at the alternative hypothesis value β∗ is determined by c2

β∗(β0�Ω). We have

lim|β∗|→∞ c
2
β∗(β0�Ω)= lim|β∗|→∞(β∗ −β0)

2 · (b′
0Ωb0

)−1 = ∞� (9)

Hence, the power of the AR test goes to one as |β∗| → ∞.
On the other hand, if one fixes the alternative hypothesis value β∗ and one considers

the limit as |β0| → ∞, then one obtains

lim|β0|→∞ c
2
β∗(β0�Ω) = lim|β0|→∞(β∗ −β0)

2 · (b′
0Ωb0

)−1

= lim|β0|→∞(β∗ −β0)
2 · (ω2

1 − 2ω12β0 +ω2
2β

2
0
)−1

= 1/ω2
2� (10)

where ω2
1, ω2

2, and ω12 denote the (1�1), (2�2), and (1�2) elements of Ω, respectively.
Hence, the power of the AR test does not go to one as |β0| → ∞ even though |β0 −β∗| →
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∞. This occurs because the structural equation error variance, Var(ui)= b′
0Ωb0, diverges

to infinity as |β0| → ∞.
The differing results in (9) and (10) is easy to show for the AR test, but it also holds for

Kleibergen’s and Moreira’s LM test and Moreira’s CLR test. For brevity, we do not provide
such results here.

Note that Davidson and MacKinnon (2008, Section 4) provided different, but some-
what related, results to those in this section.3 They consider power when β0 is fixed and
β∗ takes on large (absolute) values (as in scenario 1) but when the correlation ρuv (be-
tween the structural-equation error u and the reduced-form error v2) is held fixed and
the structural equation error variance is estimated. In contrast, the results given here
are for the case where the correlation ρΩ (between the reduced-form errors v1 and v2)
is held fixed because ρΩ can be consistently estimated, and hence, in large samples can
be treated as fixed and known. This is not true for ρuv. In the Davidson and MacKinnon
(2008) scenario, power does not go to one as β∗ → ±∞ for fixed β0.

5. Probability that a confidence set has infinite length

In this section, we show that the probability that a CS has infinite length is given by one
minus the power of the test used to construct the CS as the null value β0 of the test goes
to ∞ or −∞. This provides motivation for interest in the power of tests as β0 → ±∞. It
shows why high power against distant null hypotheses is highly desirable.

We sometimes make the dependence ofQ, S, and T on Y and β0 explicit and write

Q=Qβ0(Y)= [
Sβ0(Y) : Tβ0(Y)

]′[
Sβ0(Y) : Tβ0(Y)

]
� (11)

We denote the (1�1), (1�2), and (2�2) elements of Qβ0(Y) by QS�β0(Y), QST�β0(Y), and
QT�β0(Y), respectively.

Let

φ
(
Qβ0(Y)

) = 1
(
T

(
Qβ0(Y)

)
> cv

(
QTβ0(Y)

))
(12)

be a (nonrandomized) invariant similar level α test for testing H0 : β = β0 for fixed
known Ω, where T (Qβ0(Y)) is a test statistic and cv(QTβ0(Y)) is a (possibly data-
dependent) critical value. Examples include the AR, LM, and CLR tests in (6). Let CSφ
be the level 1 − α CS corresponding to φ. That is,

CSφ(Y)= {
β0 :φ(

Qβ0(Y)
) = 0

}
� (13)

We say CSφ(Y) has right (or left) infinite length, which we denote by
RLength(CSφ(Y))= ∞ (or LLength(CSφ(Y))= ∞), if

∃K(Y) <∞ such that β ∈ CSφ(Y) ∀β≥K(Y) (
or ∀β≤ −K(Y))� (14)

We say CSφ(Y) has infinite length, which we denote by Length(CSφ(Y)) = ∞, if it
has right and left infinite lengths. A CS with infinite length contains a set of the form
(−∞�K1(Y))∪ (K2(Y)�∞) for some −∞<K1(Y)≤K2(Y) <∞.

3Davidson and MacKinnon (2008) do not consider the probabilities of unbounded CSs or provide opti-
mality results for tests, which are the main focus of this paper.
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LetPβ∗�π�Ω(·) denote probability for events determined byY whenY has a multivari-
ate normal distribution with means matrix [πβ∗ : π] ∈ R2k, independence across rows,
and variance matrixΩ for each row. Let Pβ∗�β0�λ�Ω(·) denote probability for events deter-
mined byQwhenQ := [S : T ]′[S : T ] and [S : T ] has the multivariate normal distribution
in (3) with β = β∗ and λ = μ′

πμπ . In this case, Q has a noncentral Wishart distribution
whose density is given in (25) in the Online Supplementary Material 1.

For fixed true value β∗ and reduced-form variance matrixΩ, let Σ∗ denote the corre-
sponding structural variance matrix of each row of [u : v2]. Let ρuv denote the correlation
between the structural and reduced-form errors, that is, the correlation corresponding
to Σ∗. Some calculations show that

ρuv = ω12 −ω2
2β∗(

ω2
1 − 2ω12β∗ +ω2

2β
2∗
)1/2

ω2

and

Σ∗ =
[

σ2
u σuσvρuv

σuσvρuv σ2
v

]
=

[
ω2

1 − 2ω12β∗ +ω2
2β

2∗ ω12 −ω2
2β∗

ω12 −ω2
2β∗ ω2

2

]
�

(15)

where ω2
1, ω2

2, and ω12 are the elements of Ω; see (32) in the Online Supplementary Ma-
terial 1. By the first equality in the second line of (15), σ2

u = Var(ui), σ2
v = Var(v2i), and

ρuv = Corr(ui� v2i).
It is shown in Lemma 16.1 in the Online Supplementary Material 1 that the limit as

β0 → ±∞ ofQβ0(Y) with Y fixed is

Q±∞(Y)

:=

⎡
⎢⎢⎢⎣

e′2Y
′PZYe2 · 1

σ2
v

−e′2Y ′PZYΩ−1e1 ·
(
1 − ρ2

uv

)1/2
σu

σv

−e′2Y ′PZYΩ−1e1 ·
(
1 − ρ2

uv

)1/2
σu

σv
e′1Ω

−1Y ′PZYΩ−1e1 · (1 − ρ2
uv

)
σ2
u

⎤
⎥⎥⎥⎦ � (16)

which is the same whether β0 → +∞ or −∞, where PZ := Z(Z′Z)−1Z′, e1 := (1�0)′,
and e2 := (0�1)′. Let QT�±∞(Y) denote the (2�2) element of Q±∞(Y). It is also shown
in Lemma 16.1 in the Online Supplementary Material 1 that Q±∞(Y) has a noncentral
Wishart distribution with means matrix μπ(1/σv�ρuv/(σv(1−ρ2

uv)
1/2)) ∈Rk×2 and iden-

tity variance matrix.4

Theorem 5.1. Suppose CSφ(Y) is a CS based on invariant level α testsφ(Qβ0(Y))whose
test statistic and critical value functions, T (q) and cv(qT ), respectively, are continuous
at all positive definite 2 × 2 matrices q and positive constants qT , Pβ∗�π�Ω(T (Qc(Y)) =
cv(QT�c(Y))) = 0 for c = +∞ in parts (a) and (c) below and c = −∞ in parts (b) and (c)
below. Then, for all β∗ ∈R, λ≥ 0, andΩ positive definite;

(a) Pβ∗�π�Ω(RLength(CSφ(Y))= ∞)= 1 − limβ0→∞ Pβ∗�β0�λ�Ω(φ(Q)= 1),

(b) Pβ∗�π�Ω(LLength(CSφ(Y))= ∞)= 1 − limβ0→−∞ Pβ∗�β0�λ�Ω(φ(Q)= 1), and

4The density of this distribution is given in (27) in the Online Supplementary Material 1.
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(c) Pβ∗�π�Ω(Length(CSφ(Y))= ∞)= 1 − limβ0→±∞ Pβ∗�β0�λ�Ω(φ(Q)= 1).

Comments. (i). For the AR, LM, and LR tests, the continuity conditions on T (q)
and cv(qT ) hold given their simple functional forms in (6) using the assumption that
qT > 0 for the LM statistic and using the continuity of κLR�α(qT ), which holds by
the argument in the proof of Theorem 10.1 in Andrews and Guggenberger (2017).
We have Pβ∗�π�Ω(T (Q±∞(Y)) = cv(QT�±∞(Y))) = 0 for the AR and LM tests because
cv(QT�±∞(Y)) is a constant and T (Q±∞(Y)) is absolutely continuous with respect to
Lebesgue measure. For the CLR test, Pβ∗�π�Ω(T (Q±∞(Y)) = cv(QT�±∞(Y))) = 0 by the
argument given in the proof of Theorem 6.4 in the Online Supplementary Material 1.
The AR, LM, and CLR test statistics are sign invariant. Hence, parts (a)–(c) of Theo-
rem 5.1 apply to these tests. Theorem 6.4(a)–(c) below provides formulae for the quan-
tities limβ0→±∞ Pβ∗�β0�λ�Ω(φ(Q)= 1), which appear in Theorem 5.1, for the AR, LM, and
CLR tests.

(ii). Comment (iii) to Theorem 6.2 below provides a lower bound on 1 −
limβ0→∞ Pβ∗�β0�λ�Ω(φ(Q) = 1) over all sign and rotation invariant similar level α tests.
Combining this with Theorem 5.1(c) yields a lower bound on the probability that a CS
CSφ(Y) based on such tests has Length = ∞.

Theorem 13.1 in the Online Supplementary Material 1 provides lower bounds on 1 −
limβ0→±∞ Pβ∗�β0�λ�Ω(φ(Q) = 1) over all invariant similar level α tests. Combining these
with Theorem 5.1(a) and (b) yields lower bounds on the probabilities that a CS CSφ(Y)
has RLength = ∞ based on β0 → ∞ and LLength = ∞ based on β0 → −∞.

(iii). Note that Theorem 5.1 does not impose similarity, just invariance. The results of
Theorem 5.1(a) and (b) also hold for a CSφ(Y) that is based on level α tests that are not
invariant. Denote such tests by φ(Sβ0(Y)�Tβ0(Y)) and suppose their test statistic and
critical value functions, T (s� t) and cv(t), respectively, are continuous at all k × 2 ma-
trices [s : t] and k vectors t and satisfy Pβ∗�π�Ω(T (Sc(Y)�Tc(Y))= cv(Tc(Y)))= 0 for c =
+∞, where S±∞(Y) := ∓(Z′Z)−1/2Z′Ye2/σv and T±∞(Y) := ±(Z′Z)−1/2Z′YΩ−1e1 · (1−
ρ2
uv)

1/2σu. In this case, Pβ∗�π�Ω(RLength(CSφ(Y)) = ∞)= 1 − limβ0→∞ Pβ∗�β0�π�Ω(φ([S :
T ]) = 1) for all β∗ ∈ R, λ ≥ 0, and Ω positive definite, and likewise with LLength(·),
β0 → −∞, and c = −∞ in place of RLength(·), β0 → ∞, and c = +∞.

(iv). By Dufour (1997), all CSs for β with correct size must have positive probability
of having infinite length (assuming π is not bounded away from 0). In consequence,
expected CS length, which is a standard measure of the performance of a CS, is infinite
for all identification-robust CSs. Due to this, Mikusheva (2010) compared CSs based on
their expected truncated lengths for various truncation values. The result of Theorem 6.2
below implies that, for two CSs where the right-hand side of Theorem 6.2(c) is smaller
for the first CS than the second, the first CS has smaller expected truncated length than
the second for sufficiently large truncation values.

(v). Section 24 in the Online Supplementary Material 1 extends Theorem 5.1 to the
linear IV model that allows for heteroskedasticity and/or autocorrelation in the errors.

(vi). As indicated in part (c), the right-hand side expressions in parts (a) and (b) are
equal.



468 Andrews, Marmer, and Yu Quantitative Economics 10 (2019)

6. Power bound as β0 → ±∞
In this section, we provide two-sided AE power bounds for invariant similar tests as
β0 → ±∞ for fixed β∗. We obtain these bounds by finding the limit of the power bounds
in Theorem 3 of AMS as β0 → ±∞ using the dominated convergence theorem. The
power bounds also apply to the larger class of similar tests for which invariance is not
imposed, provided power is averaged over μπ/‖μπ‖ vectors using the uniform distribu-
tion on the unit sphere in Rk, as in Chernozhukov, Hansen, and Jansson (2009).

Using Theorem 5.1, these results are used to obtain bounds on the probabilities that
CSs constructed using sign and rotation invariant similar tests have infinite length. They
also are used to obtain bounds on certain average probabilities that similar invariant
tests and similar tests have infinite right (or left) length.

This section also determines the power of the AR, LM, and CLR tests as β0 → ±∞
and the probabilities that AR, LM, and CLR CSs have infinite length.

6.1 Density ofQ as β0 → ±∞
The density of Q := [S : T ]′[S : T ] when [S : T ] has the multivariate normal distribution
in (3) only depends on π through λ := μ′

πμπ . Let fQ(q;β∗�β0�λ�Ω) denote this den-
sity when β= β∗. It is a noncentral Wishart density with means matrix of rank one and
identity covariance matrix, which was first derived by Anderson (1946), equation (6). An
explicit expression for fQ(q;β∗�β0�λ�Ω) is given in (25) in the Online Supplementary
Material 1.

Now, we determine the limit of the density fQ(q;β∗�β0�λ�Ω) as β0 → ±∞. This, the
power bound of AMS, and the dominated convergence theorem yield the power bound
as β0 → ±∞ given below. Define

ruv := ρuv(
1 − ρ2

uv

)1/2 and λv := λ/σ2
v = μ′

πμπ/σ
2
v � (17)

Note that λv is the concentration parameter, which indexes the strength of the IVs. Let
fQ(q;ρuv�λv) denote the density of Q := [S : T ]′[S : T ] when [S : T ] has a multivariate
normal distribution with means matrix

μπ · (1/σv� ruv/σv) ∈Rk×2� (18)

all variances equal to one, and all covariances equal to zero. This density also is a non-
central Wishart density with means matrix of rank one and identity covariance matrix.
The density depends on ruv, σv, and π only through ρuv and λv. An explicit expression
for fQ(q;ρuv�λv) is given in (27) in Section 12.1 of the Online Supplementary Material 1.

Lemma 6.1. For any fixed β∗ ∈R, λ≥ 0, Ω positive definite, and 2 × 2 variance matrix q,
limβ0→±∞ fQ(q;β∗�β0�λ�Ω) = fQ(q;ρuv�λv), where ρuv and λv are defined in (15) and
(17), respectively.

Let Pβ∗�β0�λ�Ω(·) and Pρuv�λv(·) denote probabilities under the alternative hypothesis
densities fQ(q;β∗�β0�λ�Ω) and fQ(q;ρuv�λv), respectively, defined above.
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6.2 Two-sided AE power bound as β0 → ±∞
AMS provides a two-sided power envelope for invariant similar tests based on maximiz-
ing average power against two points in the alternative hypothesis: (β∗�λ) and (β2∗�λ2).
AMS refers to this as the two-sided AE power envelope because given one point (β∗�λ),
the second point (β2∗�λ2) is the unique point such that the test that maximizes average
power against these two points is a two-sided AE test under strong IV asymptotics. This
power envelope is a function of (β∗�λ).

Given (β∗�λ), the second point (β2∗�λ2) satisfies

β2∗ = β0 − dβ0(β∗ −β0)

dβ0 + 2rβ0(β∗ −β0)
and λ2 = λ

(
dβ0 + 2rβ0(β∗ −β0)

)2

d2
β0

� (19)

where rβ0 := e′1Ω
−1a0 · (a′

0Ω
−1a0)

−1/2; see (4.2) of AMS. We let POIS2(Q;β0�β∗�λ) de-
note the optimal average-power test statistic for testing β = β0 against (β∗�λ) and
(β2∗�λ2). Its conditional critical value is denoted by κ2�β0(QT ). For brevity, the formulas
for POIS2(Q;β0�β∗�λ) and κ2�β0(QT ) are given in Section 17 in the Online Supplemen-
tary Material 1.

The limit as β0 → ±∞ of the POIS2(Q;β0�β∗�λ) statistic is shown in (70) in the On-
line Supplementary Material 1 to be

POIS2
(
Q;∞� |ρuv|�λv

) := ψ(Q;ρuv�λv)+ψ(Q;−ρuv�λv)
2ψ2

(
QT ; |ρuv|�λv

) � where

ψ(Q;ρuv�λv) := exp
(−λv(1 + r2

uv

)
/2

)(
λvξ(Q;ρuv)

)−(k−2)/4

× I(k−2)/2
(√
λvξ(Q;ρuv)

)
�

ψ2
(
QT ; |ρuv|�λv

) := exp
(−λvr2

uv/2
)(
λvr

2
uvQT

)−(k−2)/4
I(k−2)/2

(√
λvr2

uvQT

)
� and

ξ(Q;ρuv) :=QS + 2ruvQST + r2
uvQT �

(20)

whereQ,QS ,QST , andQT are defined in (4), ρuv is defined in (15), ruv and λv are defined
in (17), and Iν(·) denotes the modified Bessel function of the first kind of order ν (e.g.,
see Comment (ii) to Lemma 3 of AMS for more details regarding Iν(·)).

Let κ2�∞(qT ) denote the conditional critical value of the POIS2(Q;∞� |ρuv|�λv) test
statistic. That is, κ2�∞(qT ) is defined to satisfy

PQ1|QT
(
POIS2

(
Q;∞� |ρuv|�λv

)
> κ2�∞(qT )|qT

) = α (21)

for all qT ≥ 0, where PQ1|QT (·|qT ) denotes probability under the null density fQ1|QT (·|qT ),
which is specified explicitly in (26) in the Online Supplementary Material 1 and does not
depend on β0.

When ρuv = 0, the test based on POIS2(Q;∞� |ρuv|�λv) is the AR test. This follows
because ξ(Q;0)=QS ,ψ(Q;0�λv) is monotone increasing in ξ(Q;0), andψ2(QT ;0�λv) is
a constant. Some intuition for this is thatEQST = 0 under the null and lim|β0|→∞EQST =
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0 under any fixed alternative β∗ when ρuv = 0.5 In consequence, QST is not useful for
distinguishing betweenH0 andH1 when |β0| → ∞ and ρuv = 0. Furthermore, it is shown
in (37) and Theorem 13.1 in the Online Supplementary Material 1 that the AR test is also
the best one-sided invariant similar test as β0 → +∞ and as β0 → −∞ when ρuv = 0.

The following theorem shows that the POIS2(Q;∞� |ρuv|�λv) test provides a two-
point average-power bound as β0 → ±∞ for any invariant similar test for any fixed
(β∗�λ) andΩ.

Theorem 6.2. Let {φβ0(Q) : β0 → ±∞} be any sequence of invariant similar level α tests
of H0 : β = β0 for fixed known Ω. For fixed (β∗�λ), (β2∗�λ2) defined in (19), and Ω, the
two-sided AE power envelope test POIS2(Q;∞� |ρuv|�λv) defined in (20) and (21) satisfies

lim sup
β0→±∞

(
Pβ∗�β0�λ�Ω

(
φβ0(Q)= 1

) + Pβ2∗�β0�λ2�Ω

(
φβ0(Q)= 1

))
/2

≤ Pρuv�λv
(
POIS2

(
Q;∞� |ρuv|�λv

)
> κ2�∞(QT )

)
= P−ρuv�λv

(
POIS2

(
Q;∞� |ρuv|�λv

)
> κ2�∞(QT )

)
�

Comments. (i). The power bound in Theorem 6.2 only depends on (β∗�λ), (β2∗�λ2),
and Ω through |ρuv|, which is the absolute magnitude of endogeneity under β∗, and λv,
which is the concentration parameter.

(ii). The power bound in Theorem 6.2 is strictly less than one. Hence, it is informa-
tive.

(iii). For sign and rotation invariant similar testsφβ0(Q), the lim sup on the left-hand
side in Theorem 6.2 is the average of two equal quantities.

(iv). Theorem 6.2 can be extended to cover sequences of similar tests {φβ0(S�T) :
β0 → ±∞} that satisfy no invariance properties, using the proof of Theorem 1 in Cher-
nozhukov, Hansen, and Jansson (2009). In this case, the left-hand side probabilities in
Theorem 6.2 depend on π or, equivalently (λ�μπ/‖μπ‖), rather than just λ. In this case,
Theorem 6.2 holds with Pβ∗�β0�λ�Ω(φβ0(Q) = 1) replaced by

∫
Pβ∗�λ�μπ/‖μπ‖�Ω(φβ0(S�

T)= 1)dUnif(μπ/‖μπ‖) and analogously for the term that depends on (β2∗�λ2), where
Pβ∗�λ�μπ/‖μπ‖�Ω(·) denotes probability under (β∗�λ�μπ/‖μπ‖�Ω) and Unif(·) denotes
the uniform measure on the unit sphere in Rk.

6.3 Lower bound on the probability that a CS has infinite length

Next, we combine Theorems 5.1 and 6.2 to provide a lower bound on the probability
that a sign and rotation invariant similar CS has infinite length. The same lower bound
applies to the average probability over (β∗�λ) and (β2∗�λ) that a rotation invariant sim-
ilar CS has right (left) infinite length. For a similar CS with no invariance properties, the
same lower bound applies to a different average probability that the CS has right (left)
infinite length.

5We have EQST = ES′ET by independence of S and T , EQST = 0 under H0 because ES = 0, and
lim|β0|→∞EQST = 0 under β∗ because ET = μπdβ∗(β0�Ω), limβ0→±∞ dβ∗(β0�Ω) → ∓ruv/σv and ‖ES‖ is
bounded as β0 → ±∞ by Lemma 15.1 in the Online Supplementary Material 1, and ruv = 0 when ρuv = 0.
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Let Pβ∗�λ�Ω(·) denote probability for events determined by (Z′Z)1/2Z′Y that depend
onπ only through λ, such as events that are determined by a CS based on invariant tests.

Corollary 6.3. Suppose CSφ(Y) is a CSbased on invariant similar level α tests
φ(Qβ0(Y)) that satisfy the continuity condition in Theorem 5.1. (a) For any fixed
(β∗�λ�Ω),(

Pβ∗�λ�Ω
(
RLength

(
CSφ(Y)

) = ∞) + Pβ2∗�λ2�Ω

(
RLength

(
CSφ(Y)

) = ∞))
/2

≥ 1 − Pρuv�λv
(
POIS2

(
Q;∞� |ρuv|�λv

)
> κ2�∞(QT )

)
and

(Pβ∗�λ�Ω
(
LLength

(
CSφ(Y)

) = ∞) + Pβ2∗�λ2�Ω

(
LLength

(
CSφ(Y)

) = ∞)
≥ 1 − Pρuv�λv

(
POIS2

(
Q;∞� |ρuv|�λv

)
> κ2�∞(QT )

)
�

(b) If the tests φ(Qβ0(Y)) also are sign invariant, then for any fixed (β∗�λ�Ω),

Pβ∗�π�Ω
(
Length

(
CSφ(Y)

) = ∞) ≥ 1 − Pρuv�λv
(
POIS2

(
Q;∞� |ρuv|�λv

)
> κ2�∞(QT )

)
�

Comments. (i). All three lower bounds in Corollary 6.3 are the same. The different
parts of Corollary 6.3 specify different probabilities or average probabilities that have
this lower bound.

(ii). A version of Corollary 6.3(a) also holds for a similar CS that does not sat-
isfy any invariance properties. In this case, Pβ∗�λ�Ω(RLength(CSφ(Y)) = ∞) is replaced
by

∫
Pβ∗�λ�μπ/‖μπ‖�Ω(RLength(CSφ(Y)) = ∞)dUnif(μπ/‖μπ‖) and analogously for the

other three left-hand side terms that depend on LLength(CSφ(Y)) or (β2∗�λ2). This
holds provided the similar level α tests φ(Sβ0(Y)�Tβ0(Y)) that define the CS satisfy the
conditions in Comment (iii) to Theorem 5.1.

6.4 Power of the AR, LM, and CLR tests as β0 → ±∞
Here, we provide the power of the AR, LM, and CLR tests as β0 → ±∞ for fixed (β∗�Ω).

Theorem 6.4. For fixed true (β∗�λ�Ω), the AR, LM, and CLR tests satisfy

(a) limβ0→±∞ Pβ∗�β0�λ�Ω(AR > χ2
k�1−α/k) = Pρuv�λv(AR > χ2

k�1−α/k) = P(χ2
k(λv) >

χ2
k�1−α),

(b) limβ0→±∞ Pβ∗�β0�λ�Ω(LM >χ2
1�1−α)= Pρuv�λv(LM >χ2

1�1−α), and

(c) limβ0→±∞ Pβ∗�β0�λ�Ω(LR > κLR�α(QT ))= Pρuv�λv(LR > κLR�α(QT )),

where AR, LM , and LR are defined as functions ofQ in (6), χ2
m�1−α is the 1 − α quantile of

the χ2
m distribution, and χ2

m(λv) is a noncentral χ2
m random variable with noncentrality

parameter λv.

Comments. (i). By Theorem 5.1(c), Theorem 6.4 provides the probabilities that the
AR, LM, and CLR CSs have infinite length when the true parameters are (β∗�λ�Ω). These
probabilities depend only on (|ρuv|�λv). For the AR CS, they only depend on λv.
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(ii). As pointed out by a referee, the AR CS has infinite length when the first-stage
F test strictly fails to rejectH0 : π = 0k, meaning that y ′

2PZy2/ω2 <χ
2
k�1−α (with a strict in-

equality). When the first-stage F test rejects H0 : π = 0k, that is, y ′
2PZy2/ω2 >χ

2
k�1−α, the

AR CS has finite length. When y ′
2PZy2/ω2 = χ2

k�1−α, the AR CS can have infinite length,

right length, or left length, or have finite length.6 Results in Mikusheva (2010, Proofs of
Theorems 1 and 2) provide expressions for the cases where the LM and CLR CSs have
infinite lengths, but they do not seem to have as simple intuitive interpretations as for
the AR CS.

7. Comparisons of probabilities that confidence sets have infinite length

Next, we investigate how close are the probabilities that the CLR CS has infinite length
to the lower bound in Corollary 6.3. The probabilities that the CLR CS has infinite length
are given by Theorems 5.1(c) and 6.4(c). Without loss of generality, we take σ2

v = ω22 =
1 and ω11 = 1 in this section. Let POIS2 refer to the tests that generate the two-sided
AE power envelope of AMS. These tests depend on the alternative (β∗�λ) considered
and Ω. Let POIS2∞ refer to the tests in (20), which are the limits as β0 → ±∞ of the
POIS2 tests. These tests depend on β∗ (through |ρuv|) and λ. Let POIS2 and POIS2∞ CSs
refer to the CSs constructed by inverting the POIS2 and POIS2∞ tests. These CSs are
infeasible because they depend on knowing (β∗�λ).

Table 1 reports differences in simulated probabilities that the CLR and POIS2∞
CSs have infinite lengths. The latter provide a lower bound on infinite-length prob-
abilities for CSs based on sign and rotation invariant tests, such as the CLR CS, by
Corollary 6.3(b). Hence, these differences are necessarily nonnegative. The results cover
k= 2�5�10�20�40, a range of λ values between 1 and 60 depending on the value of k, and
ρuv = 0�0�3�0�5�0�7�0�9. Table 1 also reports the probabilities that the POIS2 CS has infi-
nite length for the same k and λ values and a subset of the ρuv values, namely, 0�0�7�0�9.
The true value of β∗ is taken to be 0 without loss of generality by Section 22 in the On-
line Supplementary Material 1. The results for negative and positive ρuv values are the
same by Section 22 in the Online Supplementary Material 1, and hence, results for nega-
tive ρuv are not reported. The number of simulation repetitions employed is 50,000. The
critical values are determined using 100,000 simulation repetitions.

The results show that the CLR CS is not close to the lower bound in some param-
eter scenarios. In particular, the differences in probabilities of infinite length (DPIL’s)
between the CLR and the POIS2∞ CSs are positive for numerous combinations of
(k�λ�ρuv). The bold face numbers in Table 1 give the largest DPIL for each (k�λ�ρuv)
combination. The DPILs are increasing in k, decreasing in |ρuv|, and maximized in
the middle of the range of λ values considered. For example, for (k�ρuv) = (2�0),
DPIL ∈ [0�002�0�013] over the λ values considered, whereas for (k�ρuv)= (5�0), DPIL ∈

6These results hold because (i) the AR test strictly fails to reject H0 : β = β0 when S′S < χ2
k�1−α iff

b′
0Y

′PZYb0 < b
′
0Ωb0χ

2
k�1−α iff aβ2

0 +bβ0 +c < 0, where a := y ′
2PZy2 −ω2χ

2
k�1−α, b := −2(y ′

1PZy2 −ω12χ
2
k�1−α),

and c := y ′
1PZy1 − ω1χ

2
k�1−α, using (3) and some calculations, and (ii) the AR CS has infinite length when

a < 0. When a = 0, the AR CS has infinite right length if b < 0, infinite left length if b > 0, infinite length if
b= 0 and c ≤ 0, and finite length if b= 0 and c > 0. For related results, see Dufour and Taamouti (2005).



Quantitative Economics 10 (2019) On optimal inference in the linear IV model 473

Table 1. Differences in probabilities of infinite-length CI’s for the CLR and POIS2∞ CI’s, and
Probabilities of Infinite-Length POIS2∞ CI’s as Functions of k, λ and ρuv.

CLR–POIS2∞ POIS2∞
k λ ρuv = 0 0�3 0�5 0�7 0�9 ρuv = 0 0�7 0�9

2 1 0�002 0�003 0�003 0�001 0�002 0�867 0�862 0�851
2 3 0�007 0�008 0�003 0�004 0�004 0�680 0�654 0�614
2 5 0�011 0�010 0�005 0�004 0�002 0�497 0�452 0�407
2 7 0�013 0�009 0�004 0�004 0�003 0�345 0�291 0�256
2 10 0�012 0�007 0�004 0�003 0�002 0�182 0�138 0�117
2 15 0�007 0�004 0�002 0�001 0�001 0�056 0�034 0�029
2 20 0�003 0�002 0�001 0�000 0�000 0�015 0�008 0�006

5 1 0�003 0�002 0�001 0�001 0�003 0�902 0�900 0�884
5 3 0�010 0�007 0�003 0�001 0�005 0�779 0�752 0�670
5 5 0�020 0�010 0�003 0�004 0�004 0�639 0�571 0�459
5 7 0�026 0�013 0�005 0�006 0�002 0�502 0�404 0�295
5 10 0�027 0�014 0�006 0�005 0�001 0�323 0�214 0�139
5 12 0�027 0�013 0�006 0�004 0�001 0�230 0�133 0�082
5 15 0�023 0�011 0�005 0�003 0�000 0�132 0�061 0�035
5 20 0�012 0�005 0�003 0�001 0�000 0�047 0�014 0�008
5 25 0�006 0�003 0�001 0�000 0�000 0�015 0�003 0�002

10 1 0�002 0�002 0�001 0�001 0�003 0�918 0�917 0�904
10 5 0�018 0�011 0�005 0�003 0�007 0�733 0�673 0�526
10 10 0�035 0�018 0�008 0�005 0�002 0�461 0�317 0�173
10 15 0�037 0�017 0�008 0�005 0�001 0�242 0�110 0�046
10 17 0�034 0�016 0�007 0�004 0�000 0�177 0�069 0�026
10 20 0�026 0�015 0�006 0�002 0�000 0�109 0�033 0�011
10 25 0�016 0�008 0�003 0�001 0�000 0�043 0�008 0�002
10 30 0�008 0�004 0�002 0�000 0�000 0�016 0�002 0�000

20 1 0�003 0�002 0�001 0�000 0�002 0�929 0�930 0�921
20 5 0�017 0�012 0�004 0�003 0�008 0�806 0�768 0�617
20 10 0�035 0�021 0�008 0�008 0�003 0�597 0�462 0�240
20 15 0�043 0�023 0�010 0�009 0�002 0�393 0�211 0�070
20 20 0�042 0�021 0�009 0�005 0�001 0�226 0�079 0�018
20 25 0�033 0�016 0�007 0�003 0�000 0�116 0�024 0�004
20 30 0�023 0�011 0�004 0�002 0�000 0�053 0�007 0�001
20 40 0�007 0�003 0�001 0�000 0�000 0�010 0�001 0�000

40 1 0�001 0�000 0�000 −0�000 −0�001 0�936 0�936 0�932
40 5 0�011 0�008 0�005 0�003 0�010 0�861 0�837 0�717
40 10 0�030 0�016 0�006 0�010 0�004 0�721 0�615 0�354
40 15 0�046 0�024 0�011 0�011 0�002 0�553 0�371 0�128
40 20 0�049 0�028 0�013 0�010 0�001 0�394 0�186 0�038
40 30 0�043 0�022 0�010 0�004 0�000 0�155 0�029 0�002
40 40 0�022 0�010 0�004 0�001 0�000 0�046 0�003 0�000
40 60 0�003 0�001 0�000 0�000 0�000 0�002 0�000 0�000
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[0�003�0�027] and for (k�ρuv)= (40�0), DPIL ∈ [0�001�0�049].7 Hence, k has a noticeable
effect on the magnitude of nonoptimality of the CLR CS with larger values of k leading
to larger non-optimality. For (k�λ) = (5�10), we have DPIL ∈ [0�001�0�027] over the ρuv
values considered, and for (k�λ) = (20�15), we have DPIL ∈ [0�002�0�043] over the ρuv
values considered. Hence, |ρuv| also has a noticeable effect on the magnitude of nonop-
timality of the CLR CS in terms of DPILs with nonoptimality greatest at ρuv = 0.8

8. Optimality of CLR and LM tests as ρuv → ±1 or ρΩ → ±1

The results of Table 1 show that the magnitude of nonoptimality of the CLR CS decreases
as |ρuv| increases to 1. This raises the question of whether CLR tests are optimal in some
sense in the limit as |ρuv| → 1. In this section, we show that this is indeed the case, not
just for power as β0 → ±∞, but uniformly over all (β0�β∗) parameter values in a two-
sided AE power sense.

Let ρΩ denote the correlation parameter corresponding to the reduced-form vari-
ance matrixΩ, that is, ρΩ :=ω12/(ω1ω2).

In this section, we provide parameter configurations under which the CLR and LM
tests have optimality properties. The results cover the case of strong and semistrong
identification (where λ → ∞). They cover the cases where ρuv → ±1 or ρΩ → ±1 for
(almost) any fixed values of the other parameters, which includes weak identification
of any strength. And, they cover the cases where (ρuv�β0) → (±1�±∞) or (ρΩ�β0) →
(±1�±∞) and the other parameters are fixed at (almost) any values, which also includes
weak identification.

In somewhat related results, Chernozhukov, Hansen, and Jansson (2009) showed
that the CLR and LM tests can be written as the limits of certain WAP LR tests, which
indicate that they are at least close to being admissible.

Let d2
β∗ := d2

β∗(β0�Ω) and c2
β∗ := c2

β∗(β0�Ω), where dβ(β0�Ω) and cβ(β0�Ω) are de-
fined in (3). As in Section 6.2, let POIS2(Q;β0�β∗�λ) and κ2�β0(QT ) denote the optimal
average-power test statistic and its data-dependent critical value. Let χ2

1(c
2∞) denote a

noncentral χ2
1 random variable with noncentrality parameter c2∞.

Theorem 8.1. Consider any sequence of null parameters β0 and true parameters
(β∗�λ�Ω) such that λd2

β∗ → ∞ and λ1/2cβ∗ → c∞ ∈R\{0}. Then,

(a) Pβ∗�β0�λ�Ω(POIS2(Q;β0�β∗�λ) > κ2�β0(QT ))→ P(χ2
1(c

2∞) > χ2
1�1−α),

(b) Pβ∗�β0�λ�Ω(LR > κLR�α(QT ))→ P(χ2
1(c

2∞) > χ2
1�1−α), and

(c) Pβ∗�β0�λ�Ω(LM >χ2
1�1−α)→ P(χ2

1(c
2∞) > χ2

1�1−α).

7The simulation standard deviations of the DPILs are in the range of [0�0000�0�0014] with most being in
the range of [0�0004�0�0012]; see Table SM-I in the Online Supplementary Material 2.

8Table SM-I in the Online Supplementary Material 2 shows that the differences in probabilities that the
AR and POIS2 CSs have infinite length are very large for large ρuv values for some λ values. For example, for
ρuv = 0�9, they are as large as 0�089, 0�207, 0�288, 0�357, 0�426 for k= 2�5�10�20�40, respectively, for some λ
values. As shown above, AR = POIS2 when ρuv = 0, so the differences are zero in this case and they increase
in |ρuv| for given (k�λ).
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Comments. (i). Theorem 8.1 shows that the CLR and LM tests have the same limit
power as the POIS2 test. Theorem 8.1 provides both finite-sample limiting optimal-
ity results, where n is fixed and the limits are determined by sequences of parameters
(β0�β∗�λ�Ω), and large-sample limiting optimality results, where the limits are deter-
mined by sequences of sample sizes n and parameters (β0�β∗�λ�Ω).

(ii). By Corollary 1 of AMS, for any invariant similar test φ(Q), for any (β∗�β0�λ�Ω),

1
2
(
Pβ∗�β0�λ�Ω

(
φ(Q)= 1

) + Pβ2∗�β0�λ2�Ω

(
φ(Q)= 1

))
≤ Pβ∗�β0�λ�Ω

(
POIS2(Q;β0�β∗�λ) > κ2�β0(QT )

)
� (22)

That is, the POIS2 test determines the two-sided AE average power envelope of AMS for
invariant similar tests, where the average is over (β∗�λ) and (β2∗�λ2). A fortiori, by The-
orem 1 of Chernozhukov, Hansen, and Jansson (2009), for any similar testφ([S : T ]) (that
is not necessarily invariant), for any (β∗�β0�λ�Ω), (22) holds with Pβ∗�β0�λ�Ω(φ(Q)= 1)
replaced by the power average

∫
Pβ∗�β0�λ�μπ/‖μπ‖�Ω(φ([S : T ]) = 1)dUnif(μπ/‖μπ‖) and

likewise for the second left-hand side summand in (22). Hence, the POIS2 test also de-
termines this average power envelope for similar tests.

These results and Theorem 8.1 show that the CLR and LM tests achieve these aver-
age power envelopes for all (β∗�β0�λ�Ω) asymptotically when λd2

β∗ → ∞ and λ1/2cβ∗ →
c∞ �= 0.

(iii). The power envelopes in Comment (ii) translate immediately into false-
coverage-probability lower bounds for CSs based on invariant similar tests and sim-
ilar tests. Specifically, one minus the left-hand side in (22), which equals the average
false-coverage probability of the point β0 by the CS based on φ(Q), where the aver-
age is over the truth being (β∗�λ) and (β2∗�λ2), is greater than or equal to one minus
the right-hand side in (22). In the case of noninvariant similar tests, the bound is on
the average of the false-coverage probabilities of the CS with averaging over (β∗�λ) and
(β2∗�λ2) and μπ/‖μπ‖ in the unit sphere in Rk. Thus, Theorem 8.1 shows that the CLR
and LM CSs have optimal average false-coverage-probability properties asymptotically
when λd2

β∗ → ∞ and λ1/2cβ∗ → c∞ �= 0.
(iv). Theorem 8.1 does not apply when the IVs are completely irrelevant, that is, λ=

0, because λ= 0 implies that c∞ = 0. However, Theorem 8.1 does cover some cases where
the IVs can be arbitrarily weak; see Theorem 8.2 below.

Next, we provide conditions under which λd2
β∗ → ∞ and λ1/2cβ∗ → c∞ ∈R\{0}, as is

assumed in Theorem 8.1. First, if β0 andΩ are fixed,Ω is nonsingular, and (β∗�λ) satisfy
λ→ ∞ and

λ1/2(β∗ −β0)→L ∈R\{0} as λ→ ∞� (23)

then λd2
β∗ → ∞ and λ1/2cβ∗ → c∞ ∈ R\{0} with c∞ = L(b′

0Ωb0)
−1/2. Here, L indexes the

local alternatives against which the tests have nontrivial power. This result covers the
usual strong IV case in which π is fixed, Z′Z depends on n, and λ = π′Z′Zπ → ∞ as
n→ ∞.

The scenario in (23) also covers cases where π = πn → 0 as n→ ∞, but sufficiently
slowly that λ = π ′

nZ
′Zπn → ∞ as n→ ∞, which covers “semistrong” identification. As
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far as we are aware, this is the only optimality property in the literature for tests under
semistrong identification. The scenario in (23) also covers a finite-sample, that is, fixed
n, cases in which Z′Z is fixed, π diverges, that is, ‖π‖ → ∞, and λmin(Z

′Z) > 0. In these
cases, λ= π′Z′Zπ → ∞ as ‖π‖ → ∞.

Second, the most novel cases in which Theorem 8.1 applies are when ρuv → ±1
or ρΩ → ±1. The next result shows that λd2

β∗ → ∞ and λ1/2cβ∗ → c∞ ∈ R\{0} when
ρuv → ±1 or ρΩ → ±1 and the other parameters are fixed at (almost) any values. It also
shows that this holds when (ρuv�β0)→ (1�±∞) or (−1�±∞) or (ρΩ�β0)→ (1�±∞) or
(−1�±∞) and the other parameters are fixed at (almost) any values.

Theorem 8.2. (a) Suppose the parameters β0, β∗, σu > 0, σv > 0, and λ > 0 are fixed,
ρuv ∈ (−1�1), and ρuv → ±1. Then (i) limρuv→±1 λ

1/2cβ∗ = λ1/2(β∗−β0)/|σu±(β∗−β0)σv|
and (ii) limρuv→±1 λd

2
β∗ = ∞ provided β∗ −β0 �= ∓σu/σv.

(b) Suppose the parameters β0, β∗, ω1 > 0, ω2 > 0, and λ > 0 are fixed, ρΩ ∈ (−1�1),
and ρΩ → ±1. Then (i) limρΩ→±1 λ

1/2cβ∗ = λ1/2(β∗ − β0)/|ω1 ∓ ω2β0| provided β0 �=
±ω1/ω2 and (ii) limρΩ→±1 λd

2
β∗ = ∞ provided β0 �= ±ω1/ω2 and β∗ �= ±ω1/ω2.

(c) Suppose the parameters are as in part (a) except (ρuv�β0)→ (1�±∞) or (−1�±∞).
Then (i) lim(ρuv�β0)→(1�±∞) λ

1/2cβ∗ = lim(ρuv�β0)→(−1�±∞) λ
1/2cβ∗ = ±λ1/2/σv and

(ii) lim(ρuv�β0)→(1�±∞) λd
2
β∗ = lim(ρuv�β0)→(−1�±∞) λd

2
β∗ = ∞.

(d) Suppose the parameters are as in part (b) except (ρΩ�β0)→ (1�±∞) or (−1�±∞).
Then (i) lim(ρΩ�β0)→(1�±∞) λ

1/2cβ∗ = lim(ρΩ�β0)→(−1�±∞) λ
1/2cβ∗ = ∓λ1/2/ω2 and

(ii) lim(ρΩ�β0)→(1�±∞) λd
2
β∗ = ∞ provided β∗ �= ω1/ω2 and lim(ρΩ�β0)→(−1�±∞) λd

2
β∗ = ∞

provided β∗ �= −ω1/ω2.

Comments. (i). Combining Theorems 8.1 and 8.2 provides analytic finite-sample
limiting optimality results for the CLR and LM tests and CSs as ρuv → ±1 or ρΩ → ±1
with β0 fixed or jointly with β0 → ±∞ for (almost) any fixed values of the other parame-
ters. These results apply for any strength of the IVs except λ= 0. These results are much
stronger than typical weighted average power (WAP) results because they hold for (al-
most) any fixed values of the parameters β0, β∗, σ1, σv, and λ > 0 when ρuv → ±1 and
(almost) any fixed values of the parameters β0, β∗, ω1, ω2, and λ > 0 when ρΩ → ±1.

(ii). The cases ρuv → ±1 and ρΩ → ±1 are closely related because (1 − ρ2
Ω)

1/2ω1 =
(1 − ρ2

uv)
1/2σu by (59) in the Online Supplementary Material 1. Thus, ρuv → ±1 implies

|ρΩ| → 1 or ω1 → 0. And, ρΩ → ±1 implies |ρuv| → 1 or σu → 0.
(iii). The asymptotic results of Theorem 8.2 as ρuv → ±1 or ρΩ → ±1 are empirically

relevant because they reflect the behavior of the CLR test even when |ρuv| or |ρΩ| is not
very close to one. See the results in Table 1 when ρuv (= ρΩ) equals 0�7 and 0�9. The re-
sults of Theorem 8.2 indicate that it would be informative for empirical papers to report
estimates of ρΩ (which is consistently estimable even under weak IVs).

9. General power/false-coverage-probability comparisons

Section 7 shows that the probability that the CLR CS has infinite length is higher than the
lower bound for this probability in some parameter scenarios. By Theorem 5.1, this im-
plies that the power differences between the CLR and POIS2 tests are not always close
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Table 2. Maximum and Average Power Differences over λ and β0 Values between POIS2 and
CLR Tests for Fixed Alternative β∗ = 0.

(a) Across k patterns for fixed ρuv

POIS2–CLR

ρuv k λmax β0�max ρuv�0 POIS2 Max Average

0�0 2 7 −10,000�00 1�00 0�66 0�021 0�006
0�0 5 10 −50�00 1�00 0�68 0�030 0�009
0�0 10 15 −50�00 1�00 0�76 0�038 0�012
0�0 20 15 10�00 −1�00 0�60 0�042 0�014
0�0 40 22 −50�00 1�00 0�66 0�059 0�016

0�3 2 10 3�75 −0�96 0�86 0�019 0�005
0�3 5 10 3�50 −0�96 0�73 0�034 0�008
0�3 10 10 3�00 −0�94 0�59 0�032 0�009
0�3 20 15 3�50 −0�96 0�66 0�045 0�012
0�3 40 22 4�00 −0�97 0�72 0�061 0�014

0�5 2 5 2�00 −0�87 0�64 0�016 0�004
0�5 5 10 2�25 −0�90 0�82 0�029 0�005
0�5 10 10 2�00 −0�87 0�70 0�037 0�007
0�5 20 10 1�75 −0�82 0�53 0�046 0�009
0�5 40 15 1�75 −0�82 0�59 0�050 0�012

0�7 2 5 1�50 −0�75 0�81 0�016 0�002
0�7 5 5 1�50 −0�75 0�67 0�033 0�003
0�7 10 7 1�50 −0�75 0�71 0�036 0�005
0�7 20 7 1�25 −0�61 0�54 0�042 0�006
0�7 40 15 1�50 −0�75 0�84 0�050 0�008

0�9 2 0�9 1�25 −0�63 0�46 0�017 0�002
0�9 5 0�9 1�00 −0�22 0�33 0�017 0�002
0�9 10 3 1�25 −0�63 0�77 0�027 0�003
0�9 20 3 1�00 −0�22 0�61 0�032 0�003
0�9 40 5 1�25 −0�63 0�75 0�040 0�004

(Continues)

to zero as the null value β0 → ±∞ for a fixed true value β∗ = 0. In this section, we in-
vestigate these power differences for a fixed true value β∗ = 0 and a wide range of null
hypothesis values β0, not just β0 → ±∞. The results show that in some parameter sce-
narios these power differences are not close to zero for finite β0 and can be larger than
the power differences as β0 → ±∞.

Without loss of generality, we take σ2
v = ω22 = 1 and ω11 = 1 in this section. Table 2

reports maximum and average power differences over β0 ∈ R and λ > 0 for a fixed true
value β∗ = 0 for a range of values of (ρuv�k). As above, the choice of β∗ = 0 is without
loss of generality. These power differences are equivalent to false coverage probability
differences between the CLR and POIS2 CSs for a fixed true value β∗ at incorrect values
β0. They are necessarily nonnegative.

The λ values considered are 1, 3, 5, 7, 10, 15, 20, as well as 22, 25 when k = 20 and
40, and as well as 0�7�0�8�0�9 when k= 2 and 5 and ρuv = 0�9. The positive and negative
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Table 2. Continued.
(b) Across ρuv patterns for fixed k

POIS2–CLR

k ρuv λmax β0�max ρuv�0 POIS2 Max Average

2 0�0 7 −10,000�00 1�00 0�66 0�021 0�006
2 0�3 10 3�75 −0�96 0�86 0�019 0�005
2 0�5 5 2�00 −0�87 0�64 0�016 0�004
2 0�7 5 1�50 −0�75 0�81 0�016 0�002
2 0�9 0�9 1�25 −0�63 0�46 0�017 0�002

5 0�0 10 −50�00 1�00 0�68 0�030 0�009
5 0�3 10 3�50 −0�96 0�73 0�034 0�008
5 0�5 10 2�25 −0�90 0�82 0�029 0�005
5 0�7 5 1�50 −0�75 0�67 0�033 0�003
5 0�9 0�9 1�00 −0�22 0�33 0�017 0�002

10 0�0 15 −50�00 1�00 0�76 0�038 0�012
10 0�3 10 3�00 −0�94 0�59 0�032 0�009
10 0�5 10 2�00 −0�87 0�70 0�037 0�007
10 0�7 7 1�50 −0�75 0�71 0�036 0�005
10 0�9 3 1�25 −0�63 0�77 0�027 0�003

20 0�0 15 10�00 −1�00 0�60 0�042 0�014
20 0�3 15 3�50 −0�96 0�66 0�045 0�012
20 0�5 10 1�75 −0�82 0�53 0�046 0�009
20 0�7 7 1�25 −0�61 0�54 0�042 0�006
20 0�9 3 1�00 −0�22 0�61 0�032 0�003

40 0�0 22 −50�00 1�00 0�66 0�059 0�016
40 0�3 22 4�00 −0�97 0�72 0�061 0�014
40 0�5 15 1�75 −0�82 0�59 0�050 0�012
40 0�7 15 1�50 −0�75 0�84 0�050 0�008
40 0�9 5 1�25 −0�63 0�75 0�040 0�004

β0 values considered are those with |β0| ∈ {0�25�0�5� � � � �3�75�4�5�7�5�10�50�100�1000�
10,000}. These (λ�β0) values were chosen, based on preliminary simulations, to ensure
that changes in the power differences in Table 2 (and Tables 3 and 4 below) across neigh-
boring values (λ�β0) are small.

The number of simulation repetitions employed is 5000. The critical values are de-
termined using 100,000 simulation repetitions. For example, the simulation standard de-
viations for the power differences for (ρuv�k)= (0�20) and any fixed (β0�λ) value range
from [0�0013�0�0040] across different (β0�λ) values, which compares to simulated aver-
age of the power differences over (β0�λ) values that equals 0�014.

Tables 2(a) and 2(b) contain the same numbers, but are reported differently to make
the patterns in the table more clear. Table 2(a) shows variation across k for fixed ρuv,
whereas Table 2(b) shows variation across ρuv for fixed k. The third and fourth columns
in each table report the values of λ and β0 at which the maximum power difference is
obtained. The fifth column in each table reports ρuv�0, which is the correlation between
the structural-equation and reduced-form errors whenβ0 is the true value (based on the
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assumption that the consistently-estimable reduced-form variance matrix is the same
whether the truth is β0 or β∗). In contrast, ρuv is the same correlation, but when β∗ is
the true value—which is the true β value in the power difference simulations. The sixth
column in the tables reports the power of the CLR test at the (β0�λ) values that maximize
the power difference for given (ρuv�k), that is, at (β0�max�λmax).

Table 2 shows that the maximum (over (β0�λ)) power differences between the POIS2
and CLR tests range between [0�016�0�061] over the (ρuv�k) values. On the other hand,
the average (over (β0�λ)) power differences only range between [0�002�0�016] over the
(ρuv�k) values. This indicates that, although there are some (β0�λ) values at which the
CLR test is noticeably off the two-sided AE power envelope, on average the CLR test’s
power is not far from the power envelope. The numbers in boldface in Table 2(a) give
the largest over k maximum or average power difference for a given value of ρuv. The
numbers in boldface in Table 2(a) give the largest over ρuv maximum or average power
difference for a given value of k.

In contrast, the analogous maximum and average power difference ranges for the AR
test are [0�079�0�513] and [0�012�0�179]; see Table SM-III in the Online Supplementary
Material 2. For the LM test, they are [0�242�0�784] and [0�010�0�203]; see Table SM-IV in
the Online Supplementary Material 2. Hence, the power of AR and LM tests is very much
farther from the POIS2 power envelope than is the power of the CLR test.

Table 2(a) shows that the maximum and average (over (β0�λ)) power differences for
the CLR test are clearly increasing in k. Table 2(a) shows that for ρuv ≥ 0�3, the power
differences are maximized at more or less the same β0 regardless of the value of k. For
ρuv = 0, this is also true to a certain extent, because the sign of β0 is irrelevant (when
ρuv = 0) and the values 50 and 10,000 are both large values. Table 2(a) also shows that for
each ρuv, the power differences are maximized at λ values that (weakly) increase with k.
The increase is particularly evident going from k= 20 to 40.

Table 2(b) shows that for k≥ 5, the maximum power differences are more or less the
same for ρuv ≤ 0�7, but noticeably lower for ρuv = 0�9. For k = 2, the maximum power
differences are more or less the same for all ρuv considered. Table 2(b) shows that, for
each k, the power differences are maximized at |β0| values that become closer to 0 as ρuv
increases. Table 2(b) also shows that, for each k, the power differences are maximized at
λ values that become closer to 0 as ρuv increases.9

In sum, the maximum power differences over (β0�λ) are found to increase in k ce-
teris paribus and decrease in ρuv ceteris paribus. The λ values at which the maxima are
obtained are found to (weakly) increase with k ceteris paribus and decrease in ρuv ceteris
paribus. The |β0| values at which the maxima are obtained are found to be independent
of k ceteris paribus and decrease in ρuv ceteris paribus.

Next, Figure 1 provides a picture of how the power of the CLR, AR, and POIS2 tests
differ as a function of β0 when other parameters are held fixed. Results given are for

9See Table SM-II in the Online Supplementary Material 2 for how the maximum PD’s over β0 vary with λ
for the (ρuv�k) values in Table 2.
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Figure 1. The power functions of the POIS2, CLR, and AR tests for k = 10, λ = 15, and
ρuv = 0�0�5�0�9.
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three parameter configurations ρuv = 0�0�5�0�9 with λ = 15, k = 10, and β∗ = 0 in all
three configurations. These parameter configurations are chosen because they are ones
in which the power of the CLR test is noticeably off the power envelope for sufficiently
large β0 when ρuv = 0 and 0�5.

Figure 1(a) for ρuv = 0 shows: (i) the power of all three tests does not go to one as
β0 → ∞ (the limit value depends on the magnitude of λ, which is 15 in Figure 1), (ii) the
CLR test is off the power envelope and the AR test is on the power envelope (up to the
numerical accuracy) for large β0 −β∗, and (iii) the reverse is true for smaller β0 −β∗.

Figure 1(b) for ρuv = 0�5 shows: (i) the power of all three tests does not go to one as
β0 → ∞, (ii) the CLR test is off the power envelope for large β0 − β∗ and on the power
envelope (up to the numerical accuracy) for smaller β0 − β∗, and (iii) the AR test is on
the power envelope (up to the numerical accuracy) for intermediate values of β0 − β∗
and off the power envelope for larger and smaller β0 −β∗.

Figure 1(c) for ρuv = 0�9 shows: (i) the power of all three tests does not go to one as
β0 → ∞, but the powers of the CLR and POIS2 tests are quite close to one for β0 large,
(ii) the CLR test is on the POIS2 power envelope (up to the numerical accuracy) for all
β0 values, and (iii) the AR test is off the POIS2 power envelope for most of the β0 values
considered, including small and large β0 values.

In all of the simulations considered (across the parameters scenarios considered in
Table 2), the CLR test was found to be on the POIS2 power envelope (up to the numerical
accuracy) for small values of β0 −β∗.

The numerical results in this section show that the finding of AMS that the CLR test
is essentially on the two-sided AE power envelope does not hold when one considers a
broader range of null and alternative hypothesis values (β0�β∗) than those considered
in the numerical results in AMS.

10. Differences between CLR power and an average over λ power envelope

Results above show that the CLR test is not close to the two-sided power envelope for all
β values in some scenarios. In contrast, in this section, we show numerically the weaker
property that the CLR test is close to the average two-sided power envelope for a wide
range of β values, where the average is taken over a grid of λ values which index the
strength of identification.

We introduce a “WAP2” power envelope for similar tests with weight functions over:
(i) a finite grid of λ values, {λj > 0 : j ≤ J}, (ii) the same two-points (β∗�λj) and (β2∗�λ2j)

as in AMS for each λj for j ≤ J, and (iii) the same uniform weight function over μπ/‖μπ‖
as in Chernozhukov, Hansen, and Jansson (2009). In particular, we use the uniform
weight function over the 36 values of λ in {2�5�5�0� � � � �90�0}. This grid of λ values in-
cludes a comprehensive range of empirically relevant λ values that includes the λ values
in Table 2 in which the power of the CLR test is noticeably off the power envelope.

The WAP2 envelope is a function of (β0�β∗). The WAP2(Q�β0�β∗) test statistic
that generates this envelope is of the form

∑J
j=1(ψ(Q;β0�β∗j� λj)+ψ(Q;β0�β2∗j� λ2j))/∑J

j=1 2ψ2(QT ;β0�β∗�λj), where the functions ψ(Q;β0�β�λ) and ψ2(QT ;β0�β�λ) are as
in AMS (and as in (28) in Supplementary Material 1). The WAP2(Q�β0�β∗) conditional
critical value κ2�β0�J(qT ) is defined to satisfy PQ1|QT (WAP2(Q�β0�β∗) > κ2�β0�J(qT )|
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qT ) = α for all qT ≥ 0, where PQ1|QT (·|qT ) denotes probability under the density
fQ1|QT (·|qT ), which is specified in (26) in the Online Supplementary Material 1.

To be consistent with Tables 1 and 2, we report power differences between the
WAP2(Q�β0�β∗) and CLR tests for β∗ = 0 and a range of β0 values. These power dif-
ferences are equivalent to the false coverage probability differences between the CLR
and WAP2 CSs for fixed true β∗ and varying incorrect β0 values. The differences are nec-
essarily nonnegative.

We consider ρuv ∈ {0�0�3�0�5�0�7�0�9�0�95�0�99}, k ∈ {2�5�10�20�40}, the same β0
values as in Table 2, and ω2

1 = ω2
2 = 1. (The large ρuv values of 0�95 and 0�99 are in-

cluded to show that the results are not sensitive to ρuv being close to one.) Since β∗ = 0,
ρΩ = ρuv. Section 22 in the Online Supplementary Material 1 shows that taking β∗ = 0
and ω2

1 = ω2
2 = 1 is without loss of generality provided the support of the weight func-

tion for λ is scaled by ω2
2 when ω2 �= 1. The number of simulation repetitions employed

is 1000 for each λj value. With power averaged over the 36 λj values and independence of
the simulation draws across λj , this yields simulation SDs that are comparable to using
36,000 simulation repetitions. The critical values are determined using 100,000 simula-
tion repetitions for k= 5 and 10,000 for other values of k.

For brevity, Table 3 reports results only for k= 5 for a subset of the β0 values consid-
ered. Results for all values of k and β0 considered are given in Table SM-V in the Online

Table 3. Average (over λ) Power Differences for λ ∈ {2�5�5�0� � � � �90�0} between the WAP2 and
CLR Tests for k= 5.

ρuv�0 WAP2–CLR

β0 ρuv = 0 0�9 ρuv = 0 0�3 0�5 0�7 0�9 0�95 0�99

−10,000�00 1�00 1�00 0�005 0�002 0�001 0�001 0�000 −0�000 0�000
−100�00 1�00 1�00 0�005 0�002 0�001 0�001 0�000 −0�001 −0�000
−10�00 1�00 1�00 0�005 0�002 0�001 0�000 0�000 −0�000 −0�000
−4�00 0�97 1�00 0�003 0�001 0�000 −0�000 0�000 0�000 −0�000
−3�00 0�95 0�99 0�003 0�001 0�000 0�000 −0�000 0�001 0�000
−2�00 0�89 0�99 0�002 0�001 0�000 0�001 −0�000 −0�001 −0�000
−1�50 0�83 0�98 0�001 0�001 0�001 0�000 0�000 −0�001 −0�000
−1�00 0�71 0�97 0�001 0�000 −0�000 −0�000 −0�000 0�000 −0�000
−0�75 0�60 0�97 0�000 −0�000 0�001 −0�000 −0�000 0�000 0�000
−0�50 0�45 0�95 −0�000 −0�000 −0�001 −0�001 −0�000 −0�001 −0�000
−0�25 0�24 0�94 −0�001 −0�001 −0�001 −0�000 −0�000 0�001 −0�001

0�25 −0�24 0�83 −0�000 −0�001 −0�001 −0�000 −0�001 0�000 0�000
0�50 −0�45 0�68 0�001 0�000 0�000 0�000 0�000 −0�001 0�000
0�75 −0�60 0�33 0�000 0�001 0�001 0�001 0�000 0�000 0�000
1�00 −0�71 −0�22 0�002 0�001 0�001 0�001 0�000 0�000 0�000
1�50 −0�83 −0�81 0�001 0�002 0�003 0�003 0�001 −0�000 0�000
2�00 −0�89 −0�93 0�002 0�003 0�004 0�002 0�000 −0�001 −0�000
3�00 −0�95 −0�98 0�003 0�005 0�003 0�001 0�000 0�000 0�000
4�00 −0�97 −0�99 0�004 0�005 0�002 0�001 0�000 0�001 0�000

10�00 −1�00 −1�00 0�005 0�003 0�001 0�001 0�000 0�000 0�000
100�00 −1�00 −1�00 0�005 0�003 0�001 0�000 0�000 −0�001 0�000

10,000�00 −1�00 −1�00 0�005 0�002 0�001 0�001 0�000 −0�000 0�000
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Table 4. Average (over λ) Power Differences between the WAP2 and CLR Tests.

(a) Maxima over β0 (b) Averages over β0

k ρuv = 0 0�3 0�5 0�7 0�9 0�95 0�99 ρuv = 0 0�3 0�5 0�7 0�9 0�95 0�99

2 0�004 0�003 0�002 0�002 0�001 0�001 0�001 0�002 0�002 0�001 0�001 0�000 0�000 0�000
5 0�005 0�005 0�004 0�003 0�001 0�001 0�000 0�003 0�002 0�001 0�001 0�000 0�000 0�000

10 0�011 0�010 0�008 0�005 0�004 0�003 0�003 0�007 0�006 0�004 0�002 0�001 0�001 0�001
20 0�013 0�012 0�010 0�007 0�002 0�001 0�002 0�008 0�007 0�005 0�002 0�000 0�000 0�000
40 0�024 0�021 0�017 0�011 0�004 0�001 0�000 0�013 0�011 0�007 0�004 0�000 0�000 0�000

Supplementary Material 2. Table 4 reports summary results for all values of k. In par-
ticular, Table 4(a) provides the maxima over β0 of the average over λ power differences
for each (ρuv�k). Table 4(b) provides the average over β0 of the average over λ power
differences for each (ρuv�k).

The boldface numbers in Table 3 are the largest values in each column. Table 3 shows
that the CLR test has power quite close to the WAP2 power envelope for k= 5. The power
differences for ρuv ∈ {0�0�3�0�5�0�7} are in [0�000�0�005] (with simulation standard devi-
ations in [0�0003�0�0007]) across all β0 values. For ρuv ∈ {0�9�0�95�0�99}, the power differ-
ences are in [0�000�0�001] (with simulation standard deviations in [0�0000�0�0003]) across
all β0 values.

Table 4 shows that power differences between the WAP2 power envelope and the
CLR power are increasing in k and decreasing in |ρuv|. For k = 2, the maximum power
difference over β0 and ρuv values is very small: 0�004. In the worst case for CLR, which
is when (k�ρuv)= (40�0), the maximum power difference over β0 values is substantially
larger: 0�024. The average (over β0 values) power difference in this case is 0�013, which is
not very large. For k= 40 and ρuv ≥ 0�9, the maximum power difference (over β0 and ρuv
values) is very small: 0�004. This is consistent with the theoretical optimality properties
of the CLR test as ρuv → ±1 described in Section 8. For k= 40 and ρuv ≥ 0�9, the average
power difference (over β0 values and the five ρuv values) is very small: 0�000. The second
worst case for CLR in Table 4 is when (k�ρuv)= (20�0). In this case, the maximum power
difference over β0 values is 0�013, which is noticeably lower than 0�024 for (k�ρuv) =
(40�0).

In conclusion, the results in Tables 3 and 4 show that the CLR test is very close to the
WAP2 power envelope for most (k�ρuv�β0) values, but can deviate from it by as much as
0�024 for some β0 values when (k�ρuv)= (40�0).
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