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Theorem 3 in our paper in Quantitative Economics Volume 11 Issue 4 contains er-
rors in the expressions for both the asymptotic variance of ﬁMO and for the variance
estimator in equation (22). This note corrects those errors.

Importantly, the computer code used in the article, and posted online in the sup-
plement accompanying the article, implements the correct standard error calculation.
Thus, the standard errors reported in the paper, as well as any subsequent research that
relied on the code, are unaffected by this correction.

DEerINITIONS. Given the assumed additive structure of 8;, = B + A; + 0,, we can write
without loss of generality that ﬁit =B+ A +0; + Q; + ®;,, where 2; and ®d, are error
components that vary over i and ¢, respectively. These error components are only iden-
tified up to a mean shift. But their variances Var(£2;) and Var(®,) are invariant to such
shifts. We also define =B+ E ()‘1) + E(@;). The the mean observation estimate of g is

defined by ﬁMO = ﬁ Zf\il Zthl Bi:

ReMARrk. It follows from equations (29) and (30) that we may write Q; = Quur —
Qvunt + Z€L=O(_1)e+1(Q;x1,T%Zthlxifx;'tAz,[ - Qixl,NTﬁ Yy i XX, Az, and
D = Qy + XD NN T XitX) A — @t Nr T Lot i XX ALe),
where Aj ¢ = Q] (3 X0y xux), Az 1) and Az = Q) (3 XL, xix) A g) for £ >
0, A0 =Qy, n and Az o = Q,, 7. This is one way to decompose the error into i and
¢t components. But this decomposition is not unique as it is arbitrary how the term
Q.. nr is allocated between £2; and ®,. Nevertheless, Theorem 1 (consistency of §;;)

implies that £2; Loand®; 5 0asN, T — oo regardless of how @, yr is allocated, as

p
Qyunt 0.

THEOREM 3 (Asymptotic normality of ﬁMO). For the model in (12) of the paper, with
A.1-A.4 and assuming 0, is stationary, if L — oo and subsequently (N, T) 2 oo such that
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N/T — yand 0 < y < oo, then

INTByo - B) % N(O,NT - Zy0),

Vdr()t,) + Var(0,) + Vdr(.(l Var(tI),)

where 30 = Doy
The asymptotzc varmnce can be conszstently estimated nonparametrically by

A 1 N T R . A .
2M0=m;§<ﬁﬂ—ﬁ;)<ﬁi,—ﬁg>
1
T NT= W;;“’" BBy — By W

A 1T p 5 1N A
where B; = 1> ,_1 By, and B; = 5 >_i_1 Bis-

ReEMARK 1. The asymptotic variance of B o arises from two components: (i) the vari-
ance of true slope heterogeneity in the unit (A;) and time (#;) dimensions, and (ii) the
sampling variance that arises from imprecision in estimating the i, ¢-level parameters
(2; and P;).

REMARK 2. The MO-OLS algorithm gives estimates of 8;, identical to a “brute force” OLS
estimator (that interacts all regressors with a complete set of i and + dummies). Thus,
Buso can (in principle) also be obtained by averaging the OLS estimates. The asymptotic
distribution is identical, as are conditions required for consistency and asymptotic nor-
mality. Of course, the motivation for MO-OLS is that construction of OLS estimates and
standard errors may be infeasible in large panels.

REMARK 3. We require stationarity of 6, so that £(6;) and Var(6;) exist and can be con-
sistently estimated as as N, T — oc.

Proor. Given that ﬁit =B+A;+0;,+2,+®;,and =B+ E(A;) + E(0,), we can write

N T
Bro—B) =N"3(Ni—EQ))+T'Y (0, — EO)))

i=1 t=1
N T
NI 0+ T @,
=1 =1

and thus we have

N
JNT(BMo—m:ﬁ[iZ E(Ao}w’[iznz}
Nl:l Nl:l
1 XT: } 1 XT: }
+VN 0, — E6,) —= > @,
Tl=1 ﬁt:l
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Under our assumptions, we can apply the classical CLT to the A; and 6, terms and the
Lindeberg-Feller CLT to the £2; and ®, terms to obtain

VNT By —B) ~N(0, T - Var(A;) + N - Var(0,) + T - Var(2;) + N - Var(®,)).  (2)

Thus vVNT(B vo —B) 4N (0, NT - 3);0) as stated, and we obtain the associated small
sample approximation ,,0 ~ N (B, Zy0)-
Now consider the nonparameteric estimate of 3¢ that was proposed in (1):

1

ZMO (NT 1)N§;(B” Bt)(th Bt)

T NT- 1)TZZ(Bn By Bi— B
=1 t=1

Combining the fact that B;, = B+ A; + 0, + 2; + ®, with the definitions B; = 7 ¥°/_; B;,
and f3; = =y, B, we have that

A oA 1 Y
(Biz_BE)=</\i—NZAi>+< ZQ) (Ai—EQ)) +

i=1

. . 1 T T
Bir — By = (0t - 7;%) + ( g: ) 0t _E(Ot)) + @y,

1 N T p BN 5.\ P2 Var(; Var(£2; 1
Therefore, 7w 2ic1 2oi=1(Bic — B (Bir — Bp)' — ards) 4 dr](v ) and NT-DT
N T .4 50 H 5.\ P var(o Var(® S P i
S Bi — B (B — By > 290 4 VR 50 310 = X0 as required. O

MONTE CARLO SIMULATIONS

Here, we examine the finite sample performance of the estimate of the MO-OLS stan-
dard error proposed in (1). The performance is assessed by comparing the mean of the
estimate against the empirical standard deviation of the estimator across Monte Carlo
replications in a range of scenario environments. We consider environments with both
slope/intercept homogeneity and heterogeneity. In each of the five scenarios, MO-OLS
is also compared against Mean Group OLS and its proposed standard error.

We consider a data generating process where the dependent variable is generated by

Yit = Cit + BirXir + €it, (3)

wherei=1,...,Nand¢t=1,...,T. The distribution of the error term is €;; ~ N (0, 16).
The fixed effects in the intercept are generated by c¢;; = 1 + k; + f;, while the slope pa-
rameter is generated by 8;s = 1 + A; + 6;. The distribution of the heterogeneity terms in
both the slope and the intercept will differ by scenario (see below).
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TABLE 1. Monte Carlo scenarios.

ki f[ )\[ 9[ o
Scenario 1 0 0 0 0 0
Scenario2  N(0,0.25) 0 N(0,0.25) 0 0
Scenario 3 N(0,1) N(0,1) N(0,0.25) N(0,0.25) O
Scenario 4 N(0,1) N(0,1) N(0,1) N(0,1) 0
Scenario 5 N(0,1) N(0,1) N(0,1) N(0,1) 1

The regressor x is generated by
Xit = Cit +afjs + v +u; + ejq. 4)

The inclusion of ¢;; generates correlation between the regressor and intercept (i.e., a
fixed effects scenario), whenever the intercept varies across i and/or ¢. The parameter
a governs the correlation between the slope coefficients B;; and the regressor (i.e., fixed
effects in slopes). We set v; ~ u; ~ N(0,0.25) and e;; ~ N (0, 1).

We consider five scenarios that vary the distribution of the heterogeneity and the de-
gree of correlation between x;; and the slope coefficient. These are described in Table 1.

Table 2 contains the results of this Monte Carlo analysis. The columns on the left
report results for a sample size of N, T = 50, while the columns on the right increase
the sample size to N, T = 150. The mean of the coefficient, the standard deviation of the
coefficient, and the mean estimated standard error are reported across replications for
each scenario. The true average value of B;; is 1 in all scenarios.

Scenario 1 considers a case with no true intercept or slope heterogeneity. Bias is neg-
ligible for both estimators in this case. MO-OLS is less efficient than MG-OLS in this
case, as it adds extraneous parameters. The estimated standard error for MO-OLS is also
slightly conservative, with the bias decreasing as the sample size increases.!

Scenario 2 introduces intercept and slope heterogeneity across i alone, which is an
environment suited to the MG-OLS model. In this case, MO-OLS is only slightly less
efficient than MG-OLS, and the estimated standard error is slightly conservative when
N, T =50.

Scenario 3 adds heterogeneity across ¢ as well. Thus we have multidimensional slope
and intercept heterogeneity, the environment to which MO-OLS is suited. The MO-OLS
estimates show no evidence of bias, and the estimated MO-OLS standard errors are very
accurate for both sample sizes. In contrast, the MG-OLS estimator is upward biased due
to correlation between the regressor and the time-varying intercept, and its estimated
standard error badly underestimates the true variance of the estimator.

Scenario 4 increases the variance of the slope heterogeneity, which has the effect
of increasing the empirical standard deviation of both estimators. Again, the MO-OLS
standard error proposed here appears to be very accurate. The MG-OLS standard error
badly underestimates its empirical standard deviation.

IWhen N, T =500, the empirical standard deviation of MO-OLS is 0.0084 while the mean estimated stan-
dard error is 0.0101. This demonstrates how the upward bias in the standard error decreases with sample
size.
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TABLE 2. Monte Carlo simulations of the MO-OLS standard error.

N,T =50 N, T =150
Mean Std. Dev. Est. S.E. Mean Std. Dev. Est. S.E.

Scenario 1:

MO-OLS 1.003 0.086 0.106 1.000 0.026 0.034

MG-OLS 1.003 0.075 0.074 1.000 0.023 0.024
Scenario 2:

MO-OLS 0.996 0.110 0.123 1.001 0.049 0.052

MG-OLS 0.996 0.102 0.102 1.001 0.047 0.047
Scenario 3:

MO-OLS 1.004 0.129 0.126 0.999 0.066 0.066

MG-OLS 1.451 0.221 0.094 1.450 0.126 0.047
Scenario 4:

MO-OLS 1.009 0.212 0.213 0.999 0.117 0.118

MG-OLS 1.458 0.423 0.161 1.456 0.243 0.085
Scenario 5:

MO-OLS 1.010 0.213 0.208 1.003 0.120 0.117

MG-OLS 3.170 0.434 0.200 3.156 0.256 0.112

Note: Monte Carlo replications were set to 1000 for this study.

Finally, Scenario 5 adds correlation between x;, and the slope heterogeneity by set-
ting « = 1. Despite this complication, MO-OLS performs just as well as in Scenario 4. In

contrast, the bias of MG-OLS increases very sharply.

In summary, the simulations show that in environments that conform to the multidi-
mensional slope heterogeneity framework, the MO-OLS estimator shows little evidence

of bias, and our estimate of the standard error works well even in small samples.
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