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Equilibrium computation in discrete network games

Michael P. Leung
Department of Economics, University of Southern California

Counterfactual policy evaluation often requires computation of game-theoretic
equilibria. We provide new algorithms for computing pure-strategy Nash equilib-
ria of games on networks with finite action spaces. The algorithms exploit the fact
that many agents may be endowed with types such that a particular action is a
dominant strategy. These agents can be used to partition the network into smaller
subgames whose equilibrium sets may be more feasible to compute. We provide
bounds on the complexity of our algorithms for models obeying certain restric-
tions on the strength of strategic interactions. These restrictions are analogous to
the assumption in the widely used linear-in-means model of social interactions
that the magnitude of the endogenous peer effect is bounded below one. For these
models, our algorithms have complexity Op(n

c), where the randomness is with re-
spect to the data-generating process, n is the number of agents, and c depends on
the strength of strategic interactions. We also provide algorithms for computing
pairwise stable and directed Nash stable networks in network formation games.

Keywords. Multiple equilibria, graphical games, network formation, empirical
games.

JEL classification. C31, C57, C63, C73.

1. Introduction

Graphical and network formation games have attracted increasing attention in empir-
ical work. Practical use of these models often requires computing the set of equilibria.
This is important for evaluating counterfactual policies, for example, assessing the im-
pact of a subsidy on technology adoption in the presence of social interactions (Bhat-
tacharya, Pascaline, and Kanaya (2019))or that of busing programs and other realloca-
tion policies (Mele (2019)). Another use is model estimation, which may require com-
puting equilibria in order to evaluate likelihood or moment functions (Bajari, Hong, and
Ryan (2010), Miyauchi (2016), Soetevent and Kooreman (2007), Xu and Lee (2015)). Also,
from a theoretical standpoint, the size of the equilibrium set and its ease of computation
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are important for assessing the predictive power of a solution concept and its empirical
plausibility (Jackson (2010, Chapter 9.3)).

Computing the entire set of equilibria is a difficult problem. A naive brute-force
search that checks the equilibrium conditions for every agent is computationally in-
feasible because the number of action profiles is exponential in the number of agents.
Polynomial-time algorithms for computing all equilibria in graphical games are only
available for tree networks (Daskalakis and Papadimitriou (2006), Kearns (2007)). Be-
yond trees, the “strong conjecture” is that no polynomial-time algorithm exists (Jackson
(2010, Chapter 9.3)). For games of strategic complements, the extremal equilibria can be
computed in polynomial time, but finding all equilibria between the extremes generally
requires exhaustive search (e.g., Jia (2008)).

We provide new algorithms for computing the set of equilibria in graphical and net-
work formation games with finite action spaces. Our algorithms exploit the fact that
many agents may have payoff functions such that a particular action is a dominant strat-
egy, that is, always optimal regardless of the actions of other players. For example, in a
binary game, an agent endowed with a large enough random-utility shock may find it
a dominant strategy to choose action 1. Our algorithm first partitions the network into
smaller disjoint subgames on subnetworks whose “boundaries” consist of these agents.
The set of equilibria then consists of the “Cartesian product” of equilibrium sets for each
of these subgames, which may be feasible to compute using existing methods on ac-
count of their smaller sizes.

We provide probabilistic bounds on the complexity of our algorithms for a class of
games satisfying a restriction on the strength of strategic interactions. For this class, we
prove that our algorithms terminate in Op(n

c) evaluations of the payoff function. The
value of c is increasing in the strength of strategic interactions, which reveals an in-
teresting trade-off between computability and the economic significance of social in-
teractions.1 Simulation evidence shows that when strategic interactions are too strong,
so that our assumptions are violated, we can expect large, potentially exponential run-
times.

This class of games with restricted strategic interactions is empirically relevant. In
numerical illustrations, we show that our algorithms feasibly compute the set of equi-
libria of social interactions models estimated by Card and Giuliano (2013) and Xu (2018).
Their models obey our restrictions, and the magnitude of the peer effects estimates are
economically meaningful. We also note that our restrictions are analogous to the as-
sumption in the widely used linear-in-means model of social interactions that the en-
dogenous peer effect is bounded below one in absolute value (Bramoullé, Djebbari, and
Fortin (2009), Calvó-Armengol, Patacchini, and Zenou (2009)). Similar restrictions are
imposed on autoregressive models in time series and spatial statistics for weak depen-
dence. Furthermore, to our knowledge, the class of models that we study is the only
class of static games of complete information for which large-network CLTs are cur-
rently available (Leung and Moon (2019), Leung (2019)). CLTs for large networks are re-
quired for inference in the typical setting where the econometrician observes a small set
of plausibly independent networks.

1Here, “Op(·)” is with respect to the randomness of the data-generating process. Our algorithms are
deterministic.
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The key step for deriving our complexity result is to obtain exponential tail bounds
on a certain statistic Δ, which is essentially the size of the largest subgame obtained after
partitioning the network according to our algorithm. In fact, Δ corresponds to the size of
the largest component of a certain random graph. We approximate this by a branching
process for which the desired tail bounds can be obtained more easily, which is a com-
mon technique in random graph theory (Bollobás and Riordan (2008)). The argument is
also used in Leung and Moon (2019) and Leung (2019) to derive primitive conditions for
CLTs in network formation games and graphical games, respectively. We generalize the
tail bounds of the former paper to a larger class of sparse graphs. In particular, we do not
need to impose the assumption that agents are homophilous.

In economics, homotopy methods have been used to compute game-theoretic equi-
libria for generic games; see Herings and Peeters (2010) for a survey. These are applica-
ble to games with continuous action spaces (Judd, Renner, and Schmedders (2012)) and
games of incomplete information (Bajari, Hong, Krainer, and Nekipelov (2010)). For dis-
crete games, homotopy can be used to compute mixed-strategy equilibria, but the com-
putational cost scales poorly with the size of the game. Our paper is instead concerned
with computing pure-strategy equilibria for potentially large, discrete games.

The literature on algorithmic game theory that gives rise to the “strong conjecture”
mostly focuses on exact or approximate computation of equilibria in graphical games
for general payoff functions, and the typical objective is to obtain worst-case bounds on
the algorithmic runtime (Daskalakis, Goldberg, and Papadimitriou (2009)). Several pa-
pers in this literature explore computability under various restrictions on the network
structure. We instead primarily utilize restrictions on the payoff functions, in particular
on strategic interactions. We also study stochastic games, where payoffs depend on ran-
dom and heterogeneous types. This allows us to consider algorithmic complexity from
an ex ante perspective with respect to the randomness of the network and types and
study the “typical” behavior of our algorithms in large games.

Outline The next section presents our algorithm and complexity result for graphical
games with binary action spaces. We also provide extensions to multinomial and or-
dered choice. We then present numerical illustrations in Section 3. In the Online Sup-
plemental Appendix (Leung (2020)), Section SA.4 provides analogous results for undi-
rected network formation games under the solution concept of pairwise stability and
Section SA.5 for directed network formation games.

Notation We represent a network on n agents as an n × n adjacency matrix, where
the ijth entry Aij , referred to as a potential link, is an indicator for whether agent i is
connected to j. Following the usual convention, we require that Aii = 0 for all agents
i, meaning that there are no self links. If A is a symmetric matrix, then it represents an
undirected network. Otherwise, it is a directed network. Consider a directed network A.
A directed path from agent i to j is a sequence of distinct agents starting with i and end-
ing with j such that for each k, k′ in this sequence, Akk′ = 1. The length of a directed path
is the number of links it involves. A weakly connected component is a set of agents such
that (1) for each pair of agents i, j in this set, there exists a directed path from either i to
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j or j to i, and (2) there is no larger set of agents with property (1) containing this set.2

A strongly connected component is similar, except it requires both a directed path from i

to j and j to i. For an undirected network, we refer to a strongly connected component
simply as a component.

2. Graphical games

Let Nn = {1� � � � � n} be the set of agents, which are connected through an undirected net-
work A. Each agent i ∈ Nn is endowed with a type Ti ∈ R

dt , which is distributed i.i.d.
across agents. Let T = (Ti)

n
i=1 be the type profile. For now, we assume each agent i takes

a binary action Yi ∈ {0�1}. We later extend the results to more than two actions. Let
Y = (Yi)

n
i=1 be an action profile. For any i, we may partition Y = (Yi�Y−i), T = (Ti�T−i),

and A = (Ai�A−i), where Ai is the ith row of A and A−i the remaining submatrix, and
Y−i, T−i are similarly defined. For a given action profile Y , agent i’s net payoff from
choosing action 1 over 0 is

U
(
Si(Y �T�A)�Ti

)
� where Si(Y �T�A)≡ S(Y−i� Ti�T−i�Ai�A−i)�

for some function S(·) with range R
ds . Strategic interactions enter payoffs through the

vector of statistics Si(Y �T�A) due to its dependence on Y−i.
An action profile Y constitutes a pure-strategy Nash equilibrium if for every i ∈ Nn,

Yi = 1
{
U

(
Si(Y �T�A)�Ti

)
> 0

}
�3 (2.1)

Let ENE(T�A) ⊆ {0�1}n be the set of Nash equilibria, that is, the set of action profiles such
that for each Y ∈ ENE(T�A), the ith component Yi satisfies (2.1) for all i.

Example 1. A large literature dating back to Granovetter (1978) studies threshold
models of behavior, where agent i chooses action 1 if and only if the number or
share of neighbors choosing that action exceeds a threshold (Jackson (2010), Schelling
(1978)). This model has been used to study, for example, product adoption and protests
(de Matos, Ferreira, and Krackhardt (2014), González (2017)). It corresponds to the pay-
off function

U
(
Si(Y �T�A)�Ti

) = β

∑
j �=i

AijYj

∑
j �=i

Aij

− ξ(Ti)

for the case in which the fraction of adopting neighbors influences own adoption.
Here, Si(Y �T�A) = ∑

j AijYj/
∑

j Aij is the fraction of neighbors choosing action 1, and

2This definition deviates slightly from standard use in referring to a component as the set of agents,
rather than the subnetwork on this set of agents.

3The choice of the tie-breaking rule here for indifference is not important for the results. It has no ma-
terial import in typical econometric applications, where the payoff function is additively separable in a
continuously distributed stochastic error.
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ξ(Ti)/β is agent i’s threshold. This specification is similar to the well-known model of so-
cial interactions studied by Brock and Durlauf (2001), which is the discrete choice analog
of the Manski (1993) linear-in-means model that is widely used in applied economics
to study social interactions. In place of the term multiplying β, we can also consider
type-weighted versions of the average action, for example, Si(Y �T�A) = ∑

j Aij1{Tj =
t}Yj/

∑
j Aij1{Tj = t}, or nonlinear functions of Y−i and Ai such as the minimum or

maximum action. Hoxby and Weingarth (2005) motivated the use of these alternative
specifications.

In these examples, strategic interactions only operate through network neighbors of
the ego i. We next impose this restriction more generally. Let N (i) = {j ∈ Nn : Aij = 1} the
set of agents connected to i. For any set of agents G ⊆ Nn, let TG = (Ti)i∈G, and likewise
define YG.

Assumption 1 (Local interactions). There exists a function S̃(·) such that for all n ∈ N

and i ∈ Nn,

Si(Y �T�A)= S̃(YN (i)�Ti�TN (i)�Ai)�

This says that i’s payoffs only depend on the outcomes, types, and potential links of
agents connected to i. It is distinguished from, for example, aggregate games in which
payoffs depend on some aggregate statistic involving the actions of all agents (e.g., Men-
zel (2016)), to which our results do not apply.

Econometrician’s information We assume that the econometrician observes the net-
work A and type profile T , and given a known payoff function U(·), her objective is to
compute ENE(T�A). Now, typically in practice, A is observed in the data, but types are in-
stead partitioned into an observed and unobserved component Ti = (Xi�εi). Also, both
U(·) and the distribution of εi given Xi are specified up to some unknown parameter θ,
in which case T and U(·) are not entirely known. However, for counterfactual exercises,
a candidate value of θ is typically selected (e.g., it may be estimated or chosen from an
identified set), resulting in a known U(·). Then, for every agent i, the unobserved com-
ponent εi is drawn from the specified conditional distribution under the candidate θ,
resulting in an observed type profile T .

Network formation model We consider a nonparametric, stochastic model of network
formation for A. The implementation of the algorithm will not depend on this model.
Instead, its purpose is to derive bounds on the complexity of our algorithm. To simplify
the exposition, we initially consider a model with no strategic interactions, but we later
generalize the main result to the larger class of models introduced in Section SA.4, which
do allow for strategic interactions.

Endow each pair of agents {i� j} ⊆ Nn with a random utility shock ζij , which is i.i.d.
across pairs. For all i� j ∈ Nn with i �= j, potential links in A satisfy

Aij = gn(τi� τj� ζij)� (2.2)



1330 Michael P. Leung Quantitative Economics 11 (2020)

where gn(·) is a {0�1}-valued function that varies with the network size n, and τi ∈ R
d

is a subvector of Ti that influences link formation (and possibly also outcomes). For ex-
ample, in the context of friendship formation, τi may include the race and gender of
individual i. Since Aij is an undirected network, we assume gn(τi� τj� ζij) = gn(τj� τi� ζji).

Semiparametric analogs of (2.2) are commonly used to study link formation (e.g.,
Fafchamps and Gubert (2007)). Graham (2017) studies estimation of the model

gn(τi� τj� ζij) = 1
{
h(Xi�Xj)

′β+ αi + αj + ζij > 0
}
�

where τi = (Xi�αi), and only the subvector Xi is observed. The function h(·) allows for
homophily in the Xi’s. Our model also allows for homophily in the αi’s. In the case where
αi is correlated with some other unobserved component of Ti that enters payoffs U(·),
this generates unobserved homophily, which induces a network that is endogenous with
respect to the unobserved determinants of outcomes Yi. Model (2.2) also nests stochas-
tic block models and latent space models, which are the subject of a large literature in
statistics (e.g., Bickel and Chen (2009)).

2.1 Strategic neighborhoods

We next state and motivate a key concept used in our algorithm, which is the notion of
a strategic neighborhood. We first need several definitions. For any G ⊆ Nn, recall that
TG = (Tk)k∈G and AG is the submatrix of A containing only the rows and columns of A
in G. Then ENE(TG�AG) is the set of Nash equilibria in the game where the set of players
is G rather than Nn.

Define the nonrobustness indicator

Rc
i = 1

{
inf
s
U(s�Ti) ≤ 0 ∩ sup

s
U(s�Ti) > 0

}
� (2.3)

We say that the equilibrium action of agent i is robust if Rc
i = 0, and otherwise that it is

nonrobust. When i’s action is robust, either infs U(s�Tk) > 0 or sups U(s�Tk) ≤ 0. In the
former (latter) case, agent k chooses action 1 (0) regardless of her neighbors’ outcomes,
which only enter k’s payoffs through the first argument of U(·). Hence, Rc

i = 0 implies
that i’s equilibrium action is a dominant strategy for the given realization of her type.

Define a directed network D on Nn with ijth entry

Dij =AijRc
j �

This connects an agent i to a neighbor (with respect to A) j if j’s equilibrium action
is nonrobust. Let C(T�A) ⊆ Nn be the set of strongly connected components of D (see
Section 1 for a definition). For any G⊆ Nn, define

S(G) =G∪
{
k ∈Nn : max

j∈G
Ajk

(
1 −Rc

k

) = 1
}
�

This adds to G the set of agents with robust actions that are connected to G.

Definition 1. S(C) is a strategic neighborhood if C ∈ C(T�A).
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Figure 1. Gray agents have robust actions, white nonrobust.

It is not hard to show that the set of strategic neighborhoods coincides with the set
of weakly connected components of D (defined in Section 1).

Example 2. In Figure 1, agents with robust (nonrobust) actions are colored gray (white).
Notice D has five strongly connected components, which are the “islands” that result
from deleting all links involving the gray agents: {1�2�4}, {3}, {5}, {6}, {7�8�9}. For exam-
ple, {1�2�4} is a strongly connected component, since we can travel from any agent to
another through a path of agents with nonrobust actions. On the other hand, {5�6} is
not a strongly connected component because D65 = 0. To obtain the strategic neighbor-
hoods, we add to each component the gray agents connected to it, resulting in {1� � � � �5},
{3}, {5}, {5�6}, {5�7�8�9}. Observe that these are the weakly connected components of D.
For example, {5�6} is such a component because D56 = 1. Note that the strongly con-
nected components partition Nn, whereas the strategic neighborhoods do not.

Recall that for any action profile Y , YG is the subprofile (Yi)i∈G for any G ⊆ Nn. Our
algorithm exploits the following property of strategic neighborhoods, which is a conse-
quence of Assumption 1:

YS(C) ∈ ENE(TS(C)�AS(C)) ∀Y ∈ ENE(T�A)� (2.4)

That is, for any Nash equilibrium Y , the subprofile YS(C) is a Nash equilibrium in the
game with only players in S(C). A formal proof is given in Lemma SA.2.2. For intuition,
consider Figure 1. Because agent 1 has a nonrobust action, its optimality may be af-
fected by changes in the action of her neighbor, agent 2. Likewise, agent 2’s action may
be affected by changes in those of 3 and 5. However, 3 and 5 have robust actions and
consequently maintain the same equilibrium action regardless of those of other agents,
say 6 and 7. Therefore, if actions for agents in the strategic neighborhood {1�2�3�4�5}
are at equilibrium, then they remain optimal even after deleting agents {6�7�8�9} from
the network.

2.2 Algorithm

Our algorithm exploits property (2.4) to decompose ENE(T�A) into the Cartesian prod-
uct of equilibrium sets on smaller subnetworks, namely those on strategic neighbor-
hoods. For each C ∈ C(T�A), we need to compute ENE(TS(C)�AS(C)). Under assump-
tions stated in the next subsection, we prove that it is feasible to compute these sets via
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exhaustive search because the size of the largest strategic neighborhood is Op(logn). To
combine these sets and obtain ENE(T�A), we have to account for the fact that strategic
neighborhoods are not necessarily disjoint. Specifically, if i ∈ S(C) ∩ S(C ′) for two dis-
tinct components C, C ′, then we need to decide whether i’s action should be dictated
by profiles in ENE(TS(C)�AS(C)) or ENE(TS(C ′)�AS(C ′)). Fortunately, since C, C ′ must be
disjoint by virtue of being strongly connected components, it follows that i’s equilib-
rium action is necessarily robust and, therefore, the same across all equilibria in these
two sets.

In order to succinctly state the algorithm, we need some additional notation. For
G ⊆H ⊆ Nn, let

ENE(TH�AH)|G = {
Y ∈ {0�1}|G| : Y = Y ′

G for some Y ′ ∈ ENE(TH�AH)
}
�

which simply drops from each equilibrium action profile in ENE(TH�AH) the actions
corresponding to agents in H\G. Next, for any C ∈ C(T�A) and i ∈ S(C), let

π(i;C) =
∑

j∈S(C)

1{j ≤ i}� (2.5)

the number of agents in S(C) with label less than or equal to i.4 Finally, define

Y
(
S(C)�T

) =
{
Y ∈ {0�1}|S(C)| : Yπ(i;C) = 1 if inf

s
U(s�Ti) > 0

and Yπ(i;C) = 0 if sup
s

U(s�Ti) ≤ 0 ∀i ∈ S(C)
}
� (2.6)

This is a subset of all possible action profiles for agents on S(C). Each profile in (2.6)
fixes the actions of agents with robust actions (Rc

i = 0) at their dominant strategies (1 if
infs U(s�Ti) > 0 and 0 if sups U(s�Ti) ≤ 0). The actions of agents with nonrobust actions
are not fixed and vary freely across profiles in this set. We state our proposed procedure
in Algorithm 1.

Remark 1 (Explanation of Algorithm 1). Line 1 computes the set of strategic neigh-
borhoods. As discussed in the previous subsection, this is the same as the set of
weakly connected components of D, which can be efficiently computed using well-
known algorithms based on depth-first search. See, for example, the Matlab function
graphconncomp() or the NetworkX Python function weakly_connected_

components(). The computational complexity is O(n + L) where L is the number of
links in D (Kleinberg and Tardos (2006)). This assumes the graph is implemented using
an adjacency list, which is the efficient format for sparse graphs, the focus of this paper
(see Remark 4).

4This definition has the following purpose. Let Y ∈ {0�1}|S(C)| be an action profile for agents in S(C).
Throughout the paper, our convention is that the components of Y are arranged in increasing order of
the label of the corresponding agent. For example, if S(C) = {1�5}, then the first (second) component of Y
dictates the action of agent 1 (5). Hence, under this convention, the action of agent i ∈ S(C) according to
profile Y is given by Yπ(i;C).
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Algorithm 1: Procedure for computing the set of pure-strategy Nash equilibria.
Input: T , A, U(·)
Output: ENE(T�A)

1 Compute D and then {S(C) : C ∈ C(T�A)} using depth-first search of D.
2 Compute each ENE(TS(C)�AS(C)) using exhaustive search:

for C ∈ C(T�A) do
ES(C) ← ∅
for Y ∈ Y(S(C)�T) do

if Yπ(k;C) = 1{U(Sk(Y �TS(C)�AS(C))�Tk) > 0} for all k ∈ C then
ES(C) ← ES(C) ∪ {Y }

end
end
ENE(TS(C)�AS(C)) ← ES(C)

end
3 Combine equilibrium sets:

if ENE(TS(C)�AS(C)) �= ∅ ∀C ∈ C(T�A) then
ENE(T�A)← (×C∈C(T�A) ENE(TS(C)�AS(C))|C)

else ENE(T�A) ← ∅.

The for-loops in line 2 can be parallelized. Each iteration of the outer loop searches
over strongly connected components of D, or equivalently, strategic neighborhoods. For
each such component C, the inner loop performs an exhaustive search over candidate
action profiles in Y(S(C)�T) to find those satisfying the equilibrium conditions (2.1).
Any other algorithm guaranteed to compute the equilibrium set may be used in place
of exhaustive search (e.g., Daskalakis and Papadimitriou (2006)). In principle, one has
to search through all possible profiles in {0�1}|S(C)| to find the equilibrium set. However,
it suffices to fix the actions of agents with robust actions (Rc

i = 0) at their optimal val-
ues. This is precisely what we do by only searching through Y(S(C)�T) instead of all
conceivable action profiles in {0�1}|S(C)|.

Line 3 shows how to assemble the equilibrium sets to obtain ENE(T�A). For clarity,

×
C∈C(T�A)

ENE(TS(C)�AS(C))|C

= {
Y ∈ {0�1}n : YC ∈ ENE(TS(C)�AS(C))|C ∀C ∈ C(T�A)

}
� (2.7)

This is well-defined because C(T�A) partitions Nn.

Example 3. Consider Figure 1. As discussed in Example 2, there are five strategic neigh-
borhoods that line 2 iterates over: S1 = {1� � � � �5}, S2 = {3}, S3 = {5}, S4 = {5�6}, and
S5 = {5�7�8�9}. The set of action profiles Y(S1�T) contains 23 elements because agents
3 and 5 have robust actions. Suppose (1�1�0�1�0) is the unique Nash equilibrium on S1,
where the actions are listed in increasing order of agents’ labels. That is, E(TS1�AS1) =
{(1�1�0�1�0)}. Then by definition of robustness, we know that (0) is the unique Nash
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equilibrium on S2 and S3. Suppose (0�1�0�0) and (0�0�1�1) are the only Nash equilibria
on S5. Note that the first elements of these vectors must be 0, since agent 5’s action is ro-
bust. Finally, note that there can only be a single equilibrium on S4, since agent 6 simply
best responds to agent 5; suppose that equilibrium is (0�1). Then

E(T�A) = {
(1�1�0�1�0�1�1�0�0)� (1�1�0�1�0�1�0�1�1)

}
�

Remark 2 (Diagnostic for computational feasibility). A very simple and quick way to as-
sess the feasibility of Algorithm 1 is to compute Δ ≡ |C∗

1 |, where C∗
1 is the largest strongly

connected component of D. This is a byproduct of line 1 of Algorithm 1. The significance
of Δ is that the most computationally intensive step of Algorithm 1 is exhaustive search
over Y(S(C∗

1 )�T). The size of this set is 2Δ, since all agents in C∗
1 have nonrobust actions

by definition. In the next subsection, we provide conditions under which |Δ| = Op(logn),
in which case 2Δ has size polynomial in n. As we will discuss, if these conditions are vio-
lated, Δ can instead be order n, in which case computing the equilibrium set is infeasible
using our approach.5

Remark 3 (Strategic complements). As discussed in Section 1, under strategic com-
plements, the set of equilibria has a lattice structure, and the extremal equilibria can
be computed in polynomial time. However, finding all equilibria requires exhaustively
searching all action profiles between these extremes. Our algorithm can be modified to
speed this process up simply by restricting the search space Y(S(C)�T) in 2 to profiles
between these extremes.

2.3 Assumptions

We state two conditions required by our main result in the next subsection, which pro-
vides bounds on the complexity of Algorithm 1. It should be emphasized that, in prac-
tice, all that matters for computational feasibility is the size of the largest component
of D, as discussed in Remark 2. The purpose of these conditions is to give a theoretical
sense of what is required of the data-generating process for this number to be typically
small in practice.

The key condition for our result is a restriction on the strength of strategic inter-
actions. Leung (2019) used this condition to prove a CLT for graphical games. An analo-
gous condition is used by Leung and Moon (2019) to obtain a CLT for network formation
games. The main theoretical contribution of this paper is to show that this condition also
enables feasible computation of ENE(T�A).

To motivate the condition, consider the standard linear-in-means model of social
interactions (Bramoullé, Djebbari, and Fortin (2009))

Yi = α+
∑
j

ÃijYjβ+
∑
j

ÃijX
′
jδ+X ′

iγ + εi�

5Exhaustive search on the largest component will typically be the only computationally intensive step
of the algorithm. What might be considered a “folk theorem” in random graph theory is that the size of the
second largest component is typically much smaller than that of the first. For example, in the Erdős–Rényi
model, its size is Op(logn) (Bollobás (2001, Chapter 6)). Hence, exhaustive search is typically trivial on all
components but the largest.
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where Ã is the row-normalized version of the adjacency matrix A, obtained by dividing
each row by its row sum. This can be microfounded as the best-response function of
a linear-quadratic model (Calvó-Armengol, Patacchini, and Zenou (2009)). Existence of
an equilibrium requires |βλmax(Ã)| < 1, where λmax(Ã) is the largest eigenvalue of the
adjacency matrix. Under row-normalization, this simplifies to

|β| < 1� (2.8)

which restricts the strength of the endogenous peer effect. Without this condition, best
responses would be “explosive” in that an agent would respond to the actions of her
neighborhoods with a larger action in expectation, and her neighbors would respond
with still larger actions, etc. Therefore, no equilibrium could exist.

The assumption we impose is an analog of (2.8) for models with discrete outcomes.
The statement of the assumption is more complicated, but this is unavoidable due to the
nonlinearity and generality of the model. Recall the nonrobustness indicator Rc

i from
Section 2.1, and notice that

E
[
Rc

i

] = P
(

sup
s

U(s�Ti) > 0
)

− P
(

inf
s
U(s�Ti) > 0

)
(2.9)

(assuming measurability). This corresponds to the partial-equilibrium marginal effect
of changing statistics Si(Y �T�A) from their minimizing to their maximizing value on i’s
propensity to choose action 1. Hence, it measures the strength of strategic interactions,
analogous to (2.8). For instance, in Example 1, if β > 0, then (2.9) = P(0 ≤ ξ(Ti) < β),
which is clearly monotonic in β.

Recall that τi ∈R
d is the subvector of Ti relevant for network formation (2.2). Let μ be

a measure on R
d (which need not integrate to 1). For a given k ≤ d, consider a partition

of the type space R
d =R

k ×R
d−k, and let μk and μ−k be the marginals of μ over Rk and

R
d−k, respectively. For any h : Rd → [0�1], define the mixed norm

‖h‖m�k = sup
tk∈Rk

(∫
Rd−k

h(tk� t−k)
2 dμ−k(t−k)

)1/2
�

Assumption 2 (Strength of interactions). There exist a measure μ on R
d and function

ϕ : Rd × R
d → R+ such that, for some integer 0 ≤ k ≤ d, (a) μ is a product measure on

R
k ×R

d−k, (b)

nP(Dij = 1 | τi = t) ≤
∫
Rd

ϕ
(
t� t ′

)
dμ

(
t ′
)

for all t ∈R
d and n ∈ N, and (c)

‖λ‖m�k < 1 for λ(t)≡
∫
Rk

(∫
Rd−k

ϕ
(
t�

(
t ′k� t

′
−k

))2
dμ−k

(
t ′−k

))1/2
dμk

(
t ′k

)
�

The statement of this assumption is admittedly complicated, but this is in order to
allow for a broad class of network formation models. By Jensen’s inequality, (b) and (c)
imply that n−1 ∑

i

∑
j �=i E[Dij], the expected degree of D, is less than one in the limit. If
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this is violated, the size of the largest component of D can be large, and computation is
infeasible. In practice, as discussed in Remark 2, a direct way of assessing computational
feasibility is just to compute Δ defined in that remark.

The next example illustrates how Assumption 2 is fully analogous to (2.8).

Example 4. Consider the simple case of an exogenous network, where Aij ⊥⊥ Rc
j .6 Since

types are independent,

nP(Dij = 1 | τi = t)= E
[
Rc

j

]
nP(Aij = 1 | τi = t)� (2.10)

Consider the following inhomogeneous random graph model for A:

P(Aij = 1 | τi� τj) = ρnh(τi� τj)

for some bounded function h and ρn = κ/n for some κ > 0.7 We have

nP(Aij = 1 | τi = t) =
∫
Rd

κh
(
t� t ′

)
dμ∗(t ′)� (2.11)

for all n and t, where μ∗ is the distribution of τ1.
To put this in the setup of Assumption 2, choose k = 0, μ−k = μ∗. Then for ϕ(t� t ′) =

κE[Rc
j ]h(t� t ′),

‖λ‖m�k = E
[
Rc

j

]∥∥κh(τ1� τ2)
∥∥

2�

where ‖·‖2 is the L2-norm. Therefore, Assumption 2 requires

E
[
Rc

j

]
<

(∥∥κh(τ1� τ2)
∥∥

2

)−1
� (2.12)

Recall from (2.9) that the left-hand side measures the strength of strategic interactions.
By Jensen’s inequality, ‖κh(τ1� τ2)‖2 ≥ limn→∞ nE[Aij], the latter being the limiting ex-
pected degree of any agent. Hence, (2.12) implies that the strength of strategic interac-
tions is bounded above the inverse of the limiting expected degree:

E
[
Rc

j

]
<

(
lim
n→∞ E

[∑
j

Aij

])−1
�

To see that this is analogous to (2.8), consider a model that does not row-normalize the
adjacency matrix, meaning we replace Ã with A. Since λmax(A) ≤ maxi

∑
j Aij , a suffi-

cient condition for |βλmax(A)| < 1 is

|β|<
(

max
i

∑
j

Aij

)−1
� (2.13)

6Exogeneity holds if Ti can be partitioned into two independent subvectors, τi and Xi, where U(s�Ti)

only depends on Ti through Xi, while Aij = gn(τi� τj� ζij), with ζij ⊥⊥ Tj .
7This model has been extensively studied by probabilists (Bollobás, Janson, and Riordan (2007)). A large

literature on community detection in statistics uses the inhomogeneous random graph (also called the
stochastic block model) as the data-generating process (Bickel, Chen, and Levina (2011)).
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which is directly analogous to the prior equation. Furthermore, Assumption 2 and (2.13),
as well as (2.8) in the row-normalized model, have the same behavioral implication that
an exogenous one-unit change in the average agent’s outcome causes the total outcome
of her neighbors to change by less than one unit. Remark SA.1.1 in Section SA.1 elabo-
rates on this point. Finally, note that this example sets k = 0; for a model in which k > 0
and μk is nontrivial, see Example SA.1.1 in Section SA.1.

Remark 4 (Sparsity). In Example 4, a necessary condition for (2.12) is that either
E[Rc

j ] = 0, in which case there are no strategic interactions, or ‖κh(τ1� τ2)‖2 <∞, which,
from the discussion in Example 4, means that the limiting expected degree of any agent
is finite. This is a common notion of network sparsity for A (Barabási (2015)). It formal-
izes the well-known stylized fact that, for most real-world social networks, the number
of connections involving the typical agent is significantly smaller than the network size
(Chandrasekhar (2016)).

The next assumption imposes mild regularity conditions.

Assumption 3 (Regularity). (a) supt�t ′ P(Dij = 1 | τi = t� τj = t ′) < 1 for any n.

(b) supt

∫
Rk(

∫
Rd−k ϕ(t� (t ′k� t

′
−k))

2 dμ−k(t
′
−k))

1/2 dμk(t
′
k) < ∞.

(c) Either ϕ(t� t ′)= 0 for any t� t ′ ∈R
d , or

inf
t∈Rd

∫
Rd

ϕ
(
t� t ′

)
dμ

(
t ′
)
> 0

for ϕ(·) and μ defined in Assumption 2.

In Example 4 both (a) and (b) immediately hold because h(·) is bounded. In part
(c), if ϕ(t� t ′) = 0 everywhere, then this corresponds to a model either with an empty
network (Aij = 0 a.s.) or with no strategic interactions (Rc

j = 0 a.s.). For models with
strategic interactions, part (c) implies that the network is asymptotically nondegenerate.
For instance, in Example 4,

inf
t∈Rd

∫
Rd

ϕ
(
t� t ′

)
dμ

(
t ′
) = E

[
Rc

j

]
inf
t∈Rd

∫
Rd

κh
(
t� t ′

)
dμ

(
t ′
)
�

The infimum term on the right-hand side is the infimum over t of the conditional limit-
ing expected degree of an agent of type t. If this is strictly positive, it means the expected
number of connections involving any agent is nonzero in the large-network limit.

2.4 Algorithmic complexity

We next state our main result, the proof of which is given in Section SA.2.

Theorem 1. Suppose evaluating Rc
i and Ui(Si(Y �T�A)�Ti) have the same complexity for

any i. Under Assumptions 1–3, Algorithm 1 computes ENE(T�A) in Op(n
1+q) evaluations

of the payoff function for q > log 2/ log‖λ‖−1
m�k, where ‖λ‖m�k is defined in Assumption 2.
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Remark 5. The assumption that Rc
i and Ui(Si(Y �T�A)�Ti) have the same complexity is

a mild requirement, since in practice, the payoff function is typically monotonic in each
component of Si(Y �T�A). If the assumption fails, then the complexity is instead of order
n1+q + ∑n

i=1 Rc
i .

Remark 6. The theorem says that Algorithm 1 has polynomial complexity in models
for which ‖λ‖m�k lies below the “unit root” of 1. How far this parameter lies below the
unit root determines the speed of computation through the order of the polynomial q.
If ‖λ‖m�k = 0�5, then q can be chosen arbitrarily close to one. If instead it is closer to
one, then the computational speed can be slow. This is because the size of the largest
component of D increases with the magnitude of this parameter, as shown in simula-
tions (Section 3); Remark 8 below provides some intuition for this fact. As discussed in
Remark 2, computing the equilibrium set on the strategic neighborhood corresponding
to the largest component is the main computational bottleneck.

Remark 7. The key step of the proof is establishing a polynomial bound on the com-
plexity of line 2 of the algorithm. This results from an exponential tail bound on the size
of any arbitrary component of the network D. The proof technique is to traverse the
component using a breadth-first search, where we start at an arbitrary agent, branch to
her neighbors in D, then branch to their neighbors, etc. The number of agents traversed
at each step can be stochastically bounded by a multitype Galton–Walton branching
process. Then using an argument due to Turova (2012), we derive exponential bounds
on the size of this process. This line of argument is commonly used in random graph
theory to study the phase transition of the giant component (e.g., Janson, Luczak, and
Rucinski (2011, Chapter 3)).

Remark 8. The key condition is Assumption 2. To understand its role, imagine “n= ∞.”
From the discussion in the previous subsection, we can roughly interpret ‖λ‖m�k as the
expected degree of an arbitrary agent in D (formally it is an upper bound by Jensen’s
inequality). For the branching process in Remark 7, as we branch from neighborhood
to neighborhood, the number of additional agents traversed progressively shrinks if the
expected degree is less than one because the process is below its “replacement rate.”
In this case, the branching process eventually reaches extinction.8 Hence, its total size is
stochastically bounded, and tail bounds may be obtained. If the expected degree instead
exceeds one, then the expected size of the branching process can grow exponentially
without bound because each agent is replaced with more than one neighbor in expecta-
tion. This case corresponds to having a “giant component” in the network, meaning the
size of the largest component is order n.9 Then the number of candidate action profiles
to search through is exponential in n, as discussed in Remark 2, so exhaustive search is
infeasible.

8In a single-type branching process, the expected total population size is
∑∞

t=0 μ
k, where μ is the ex-

pected number of offspring produced by any particle (Mode (1971)). Hence, when μ< 1, this is (1 −μ)−1 <

∞. The parameter μ is analogous to ‖λ‖m�k in our context.
9For a formal result for the case of inhomogeneous random graphs, see Theorem 3.1 of Bollobás, Janson,

and Riordan (2007).
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Remark 9. Theorem SA.4.2 in the Online Supplemental Appendix generalizes Theo-
rem 1, allowing A to be drawn from a stochastic model of network formation with strate-
gic interactions.

2.5 Multinomial choice

Our previous results pertain to games with binary action spaces. We next consider the
extension to K + 1 > 2 unordered actions, which we arbitrarily label {0� � � � �K}. Let
Uk(Si(Y �T�A)�Ti) be i’s utility from choosing action k, where

Si(Y �T�A)≡ S(Y−i� Ti�T−i�Ai�A−i)� (2.14)

and S(·) is a function with range R
ds satisfying Assumption 1. An action profile Y =

(Yi)
n
i=1 is a pure-strategy Nash equilibrium if for every i ∈ Nn,

Yi = k if and only if Uk

(
Si(Y �T�A)�Ti

)
>U�

(
Si(Y �T�A)�Ti

) ∀� �= k� (2.15)

Example 5. Suppose Ti = ((X ′
ik� εik))

K
k=0, where Xik is observed and εik unobserved.

Let

Uk

(
Si(Y �T�A)�Ti

) = θ1 +X ′
ikθ2 +

∑
�

β��k

∑
j

Aij1{Yj = �}
∑
j

Aij

+ εik�

This allows payoffs from action k to depend on the fraction of neighbors choosing action
� for any �, and the peer effect β��k can vary across � and k.

Algorithm 1 and Theorem 1 can be extended to this setting if we redefine the nonro-
bustness indicator (2.3) as

Rc
i = 1

{
inf
s

min
��=k

(
Uk(s�Ti)−U�(s�Ti)

) ≤ 0 ∀k ∈ {0� � � � �K}
}
� (2.16)

To understand this, note that if Rc
i = 0, then there is some action k such that the

marginal utility of choosing k over any other � is positive in any Nash equilibrium
(infs min��=k(Uk(s�Ti) − U�(s�Ti)) > 0), in which case choosing k is the dominant strat-
egy. This definition reduces to (2.3) in the binary choice setting where K = 1 and the
payoff of action 0 is normalized to 0.

Algorithm 1 can be applied to compute the set of Nash equilibria under multinomial
choice by redefining Rc

i as (2.16), the definition of equilibrium in line 2 of Algorithm 1
as (2.15), and

Y
(
S(C)�T

) =
{
Y ∈ {0� � � � �K}|S(C)| : Yπ(i;C) = k if

inf
s

min
��=k

(
Uk(s�Ti)−U�(s�Ti)

)
> 0� ∀i ∈ S(C)�k ∈ {0� � � � �K}

}
�

Analogously to (2.6), this is the set of action profiles on S(C) that fix the actions of agents
with robust actions at their dominant strategies. The resulting algorithm computes in
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Op(n
1+q) time by Theorem 1, whose proof applies almost verbatim. Example SA.1.2 in

Section SA.1 illustrates the interpretation of Assumption 2 in the multinomial choice
setting.

2.6 Ordered choice

We next consider the case in which the action space {0� � � � �K} is ordered in the natural
way. Let U(y�Si(Y �T�A)�Ti) denote i’s utility from choosing action y, where Si(Y �T�A)

is defined as in (2.14). An action profile Y = (Yi)
n
i=1 is a pure-strategy Nash equilibrium

if, for every i ∈ Nn,

Yi = argmax
y∈{0�����K}

U
(
y�Si(Y �T�A)�Ti

)
� (2.17)

Define U(K + 1� Si(Y �T�A)�Ti) = U(−1� Si(Y �T�A)�Ti) = −∞. Then by Lemma 1 of
Aradillas-Lopez and Rosen (2019), (2.17) is equivalent to

U
(
Yi�Si(Y �T�A)�Ti

)
≥ max

{
U

(
Yi + 1� Si(Y �T�A)�Ti

)
�U

(
Yi − 1� Si(Y �T�A)�Ti

)}
(2.18)

if U(·) satisfies a strict concavity condition in its first argument (their Restriction SR(i)).
Concavity is a mild restriction guaranteeing each agent i has an a.s. unique best re-
sponse to any profile of actions Y−i. We maintain this assumption in what follows.

Example 6. Card and Giuliano (2013) estimated an empirical model of peer effects
in risky behavior among teens. They consider an ordered response model with strate-
gic interactions with K = 2, where 0 indicates no sexual activity, 1 intimate contact
without intercourse, and 2 intercourse. Their model is equivalent to normalizing the
payoff of action 0 to 0 and setting U(1� Si(Y �T�A)�Ti) = X ′

iβ + εi − c1(Y−i�A) and
U(2� Si(Y �T�A)�Ti) = 2(X ′

iβ + εi) − c1(Y−i�A) − c2(Y−i�A). Here, Ti = (Xi�εi), and
Si(Y �T�A) = (c1(Y−i�A)� c2(Y−i�A)) are cutoffs that depend on the actions of other
agents. Then defining U∗

i = X ′
iβ+ εi, a Nash equilibrium Y satisfies, for all agents i,

Yi =

⎧⎪⎪⎨
⎪⎪⎩

0 if U∗
i ≤ c1(Y−i�A)�

1 if c1(Y−i�A) < U∗
i ≤ c2(Y−i�A)�

2 if c2(Y−i�A) < U∗
i �

Examples of cutoffs are

c1(Y−i�A) = α1 − γ1

∑
j

Aij1{Yj ≥ 1}
∑
j

Aij

� c2(Y−i�A) = α2 − γ2

∑
j

Aij1{Yj = 2}
∑
j

Aij

�

where α2 > α1 and α1 < α2 − γ2 to ensure strict concavity. This example coincides with
the baseline specification of Card and Giuliano (2013) in their setting where a network
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consists of only two linked agents. Under strategic complements (γ1�γ2 ≥ 0), it says that
agents choose riskier behaviors the higher the share of their friends choosing riskier be-
haviors.

We extend Algorithm 1 and Theorem 1 to ordered choice by redefining (2.3) as

Rc
i = 1

{
inf
s

(
U(y� s�Ti)− max

{
U(y + 1� s�Ti)�U(y − 1� s�Ti)

})
< 0

∀y ∈ {0� � � � �K}
}
�

Similar to (2.16), if Rc
i = 0, then there is some action y such that the marginal utility of

choosing y over any other action is positive in any Nash equilibrium, so that choosing y

is the dominant strategy. In Example 6,

Rc
i = 1

{
X ′

iβ+ εi − α1 + max{γ1�0} > 0
}

1
{
X ′

iβ+ εi − α2 + min{γ2�0} < 0
}

× 1
{
min

{−(
X ′

iβ+ εi
) + α2 − max{γ2�0}�X ′

iβ+ εi − α1 + min{γ1�0}} < 0
}
�

Algorithm 1 can be applied to compute the set of Nash equilibria by redefining Rc
i as

above, the definition of equilibrium in line 2 of Algorithm 1 as (2.18), and

Y
(
S(C)�T

) =
{
Y ∈ {0� � � � �K}|S(C)| : Yπ(i;C) = y if

inf
s

(
U(y� s�Ti)− max

{
U(y + 1� s�Ti)�U(y − 1� s�Ti)

}) ≥ 0�

∀i ∈ S(C)� y ∈ {0� � � � �K}
}
�

Analogously to (2.6), this is the set of action profiles on S(C) where we fix the actions
of agents with robust actions at their optimal choices. Theorem 1, whose proof ap-
plies almost verbatim to the resulting algorithm, implies its computational complexity
is Op(n

1+q).

3. Numerical illustrations

This section illustrates the performance of our algorithms on graphical games estimated
in Card and Giuliano (2013) and Xu (2018). We also show empirically the relationship
discussed in Remark 8 between computational feasibility and the parameter ‖λ‖m�k in
Assumption 2 that controls the strength of strategic interactions.

3.1 Binary choice

We consider a binary graphical game inspired by Xu (2018), who estimates a model of
college attendance with social interactions. He specifies net payoffs from attendance as

U
(
Si(Y �T�A)�Ti

) = X ′
iθ+β

∑
j

AijYj

∑
j

Aij

+ εi�
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which corresponds to Example 1 with a linear model for the threshold. Here, Yi is stu-
dent i’s college attendance decision, and Aij represents friendship between i and j. We
apply Algorithm 1 to compute the set of pure-strategy Nash equilibria using his esti-
mated parameters.

Xu (2018) used data from the restricted-use sample of Add Health (Harris and Udry
(2018)), only using the three largest schools (831 student observations). We instead use
all schools from the public-use sample, excluding students with missing data (1952 stu-
dents). We construct the covariates Xi used in his application, and following his setup,
draw εi from the logistic distribution.

The public-use sample contains information on degrees (number of friends of each
student) but not the full network A. We opt to simulate a network from a configuration
model (Jackson (2010, Chapter 4.1.4)) calibrated to the empirical degree sequence of the
Add Health network. This model approximately draws a network uniformly at random
from the set of all networks such that the degree sequence matches the empirical degree
sequence.10

For (θ�β), we take the estimate in Table 5, column AMLE(4) of Xu (2018) and add 0�2
to the estimated value of β. As noted in Xu’s paper, the partial-equilibrium peer effects
suggested by these estimates are fairly large and similar to those of other studies. With
Xu’s original estimates, for an agent with covariates equal to the mean covariate vector,
the probability of college attendance increases by 11�83% if the fraction of friends at-
tending increases from 0 to 0�5 in partial equilibrium. Using our sample and modified
parameters, this marginal effect is instead 46%.

We compute the set of Nash equilibria for 100 simulation draws. Each simulation re-
draws random utility shocks and a network from the configuration model, while keeping
covariates fixed. Shocks are independent across agents and of the network, as in Xu’s ap-
plication. Computation is carried out on a laptop with a 2�6 GHz processor and 8 GB of
memory. The algorithm is coded in Python and does not parallelize.

Table 1 reports the results. The rows give the mean, standard deviation, minimum,
and maximum of the statistic across simulation draws. Note that the standard deviation
for the average degree of A is almost zero because the degree distribution is given by
the data and essentially fixed across draws. We see that the average outcome is similar
across equilibria, and the number of equilibria is small, on average around three. The
computation time is 1 second on average, although occasionally the largest component
can have a larger number of agents, resulting in a longer computation time. In this case,
the largest size is 19, and computing the corresponding set of equilibria takes about half
a minute.

We next numerically illustrate the relationship between β and the size Δ of the
largest component of D. The motivation is that β controls the strength of strategic inter-
actions ‖λ‖m�k. Our theoretical results require this parameter to be less than one, which
ensures that the size of the largest component Δ grows only logarithmically with n. Re-
call that, in line 2 of Algorithm 1, the most computationally intensive step is computing

10We use out-degrees (number of friends named by the ego) as degrees. We simulate a single network A

on all observations. In reality, the data consists of several schools with few cross-school links.
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Table 1. Results.

Ȳ Lower Ȳ Upper # NE Time Δ D Deg A Giant A Deg

Mean 0�141 0�142 3�2 1�1 8�4 0�488 1717�6 4�914
SD 0�008 0�008 3�0 5�3 3�4 0�040 1�4 0�004
Min 0�118 0�118 1�0 0�1 4�0 0�395 1715�0 4�902
Max 0�166 0�167 16�0 37�8 19�0 0�607 1719�0 4�921

Note: n = 1952, 100 simulations. Column 1 is the smallest average outcome across simulations, column 2 the largest. Col-
umn 3 is the number of equilibria. Column 4 is computation time in seconds. Column 5 (7) is the size of the largest component
of D (A) and column 6 (8) the average degree of D (A).

the equilibrium set of the strategic neighborhood corresponding to the largest compo-
nent of C(T�A). As discussed in Remark 2, this requires searching over 2Δ elements, so
Δ determines the computational feasibility of our proposed algorithm. If β is too large,
then Δ will be too large for feasible computation.

We simulate D according to the same model above, except with β increased by 0�6
rather than 0�2. As predicted by the theory, with a larger β (and hence larger ‖λ‖m�k), the
average size of the largest component increases to 32. This corresponds to a significant
increase in 2Δ and, therefore, the expected computation time. When we increase β by 1
rather than 0�6, the average size of the largest component balloons to 159, so computing
the equilibrium set is infeasible in practice.

3.2 Ordered choice

We repeat the exercise in the previous subsection, now using the ordered choice model
of Card and Giuliano (2013) in Example 6. We construct their covariates Xi using the
public-use sample of Add Health, whereas the authors utilize the restricted-use sample.
After discarding observations with missing data, our sample size is 1184. We calibrate
the values of β, γ1, γ2 using the third columns of Tables 3 and A3 of their paper. This
corresponds to their specification allowing for peer effects but assuming independent
random-utility shocks across agents. The authors do not report estimates of the inter-
cepts α1, α2, so we set them to −1�5, 1�5, respectively.

For these parameter values and our data, given an agent with covariates equal to
the mean covariate vector, their probability of engaging in no sexual activity (action 0)
decreases by 23% if the fraction of friends engaging in at least some intimate contact
(actions 1 or 2) increases from 0 to 0�5 in partial equilibrium. The corresponding partial-
equilibrium effect on the probability of engaging in intercourse (action 2) is a 20% in-
crease.

We compute the set of Nash equilibria for 100 simulation draws using modifica-
tions to Algorithm 1 discussed in Section 2.6. We draw random utility shocks εi from
a standard normal distribution, following Card and Giuliano (2013). Independently of
the shocks, we draw the network from a configuration model calibrated to the empirical
degree sequence, as in the previous binary choice illustration. This setting differs from
that of Card and Giuliano (2013) because we use friendship network data and assume
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Table 2. Results.

Ȳ Lower Ȳ Upper # NE Time Δ D Deg A Giant A Deg

Mean 1�224 1�226 2�1 6�2 6�3 0�401 985�5 4�515
SD 0�014 0�014 1�8 37�6 2�7 0�045 1�6 0�000
Min 1�188 1�188 1�0 0�1 2�0 0�230 981�0 4�515
Max 1�265 1�267 16�0 374�0 16�0 0�503 987�0 4�515

Note: n = 1184, 100 simulations. Column 1 is the smallest average outcome across simulations, column 2 the largest. Col-
umn 3 is the number of equilibria. Column 4 is computation time in seconds. Column 5 (7) is the size of the largest component
of D (A) and column 6 (8) the average degree of D (A).

our whole sample (1184 observations) is part of the same game, whereas the authors as-
sume that each game consists of only two students who are best friends. Finally, due to
the larger action space, we parallelize 2 of the algorithm across 16 cores (8 GB memory
per core, 2–3 GHz CPUs) for components C of size at least 12.

Table 2 reports the results of this exercise. The statistics for Δ are largely similar to the
binary choice exercise. The computation time is 2 seconds on average, and the longest
computation time is about 6 minutes, which corresponds to a simulation draw for which
the size of the giant component of D is 16.

4. Conclusion

We propose new algorithms for computing the set of Nash equilibria of graphical games.
For models satisfying a restriction on the strength of strategic interactions, we show the
algorithms typically complete in polynomial time, or more formally, in Op(n

c) evalua-
tions of the payoff function for some c > 1. Our theory and simulation results suggest
that the closer the restriction is to being violated, the larger the exponent c, and hence
the more difficult it is to compute the equilibrium set.

The algorithms proceed by constructing small subgames for which it is feasible to
compute the equilibrium set and then combining these sets. These subgames corre-
spond to the components of a certain network, which can be quickly computed using
well-known algorithms based on depth-first search. Under our conditions, we show that
the largest component is typically small, scaling logarithmically with the network size. It
then becomes feasible to exhaustively search the space of action profiles component by
component to compute all equilibria.

In the Online Supplemental Appendix, we provide algorithms for computing equi-
libria of network formation games, including pairwise stable and Nash stable equilibria.
The former solution concept only allows an agent to unilaterally deviate by deleting a
single link, while the latter allows for unilateral deletion of multiple links. It is possible
to consider refinements in the undirected setting, such as pairwise Nash stability, by
combining aspects of both algorithms. We discuss how the algorithms can be applied to
compute previously intractable sharp bounds on structural parameters based on mo-
ment inequalities in Sheng (2016).



Quantitative Economics 11 (2020) Equilibrium computation in discrete network games 1345

References

Aradillas-Lopez, A. and A. Rosen (2019), “Inference in ordered response games with
complete information.” CeMMaP working paper. [1340]

Bajari, P., H. Hong, J. Krainer, and D. Nekipelov (2010), “Computing equilibria in static
games of incomplete information using the all-solution homotopy.” Operations Re-
search, 58, 237–245. [1327]

Bajari, P., H. Hong, and S. Ryan (2010), “Identification and estimation of a discrete game
of complete information.” Econometrica, 78 (5), 1529–1568. [1325]

Barabási, A. (2015), Network Science. Cambridge University Press. [1337]

Bhattacharya, D., D. Pascaline, and S. Kanaya (2019), “Demand and welfare analysis in
discrete choice models with social interactions.” Working paper. [1325]

Bickel, P. and A. Chen (2009), “A nonparametric view of network models and Newman–
Girvan and other modularities.” Proceedings of the National Academy of Sciences, 106
(50), 21068–21073. [1330]

Bickel, P., A. Chen, and E. Levina (2011), “The method of moments and degree distribu-
tions for network models.” Annals of Statistics, 39 (5), 2280–2301. [1336]

Bollobás, B. (2001), Random Graphs. Cambridge University Press. [1334]

Bollobás, B., S. Janson, and O. Riordan (2007), “The phase transition in inhomogeneous
random graphs.” Random Structures and Algorithms, 31 (1), 3–122. [1336, 1338]

Bollobás, B. and O. Riordan (2008), “Random graphs and branching processes.” In Hand-
book of Large-Scale Random Networks, 15–115, Springer. [1327]

Bramoullé, Y., H. Djebbari, and B. Fortin (2009), “Identification of peer effects through
social networks.” Journal of Econometrics, 150 (1), 41–55. [1326, 1334]

Brock, W. and S. Durlauf (2001), “Discrete choice with social interactions.” Review of Eco-
nomic Studies, 68 (2), 235–260. [1329]

Calvó-Armengol, A., E. Patacchini, and Y. Zenou (2009), “Peer effects and social networks
in education.” Review of Economic Studies, 76 (4), 1239–1267. [1326, 1335]

Card, D. and L. Giuliano (2013), “Peer effects and multiple equilibria in the risky behavior
of friends.” Review of Economics and Statistics, 95 (4), 1130–1149. [1326, 1340, 1341, 1343]

Chandrasekhar, A. (2016), “Econometrics of network formation.” In Oxford Handbook
on the Econometrics of Networks (Y. Bramoullé, A. Galeotti, and B. Rogers, eds.). [1337]

Daskalakis, C., P. W. Goldberg, and C. H. Papadimitriou (2009), “The complexity of com-
puting a Nash equilibrium.” SIAM Journal on Computing, 39 (1), 195–259. [1327]

Daskalakis, C. and C. Papadimitriou (2006), “Computing pure Nash equilibria in graphi-
cal games via Markov random fields.” In Proceedings of the 7th ACM Conference on Elec-
tronic Commerce, 91–99. ACM. [1326, 1333]

http://www.e-publications.org/srv/qe/linkserver/setprefs?rfe_id=urn:sici%2F1759-7323%282020%2911%3A4%3C1325%3AECIDNG%3E2.0.CO%3B2-2
http://www.e-publications.org/srv/qe/linkserver/openurl?rft_dat=bib:2/bajari2010computing&rfe_id=urn:sici%2F1759-7323%282020%2911%3A4%3C1325%3AECIDNG%3E2.0.CO%3B2-2
http://www.e-publications.org/srv/qe/linkserver/openurl?rft_dat=bib:3/bajari2010identification&rfe_id=urn:sici%2F1759-7323%282020%2911%3A4%3C1325%3AECIDNG%3E2.0.CO%3B2-2
http://www.e-publications.org/srv/qe/linkserver/openurl?rft_dat=bib:6/bickel2009nonparametric&rfe_id=urn:sici%2F1759-7323%282020%2911%3A4%3C1325%3AECIDNG%3E2.0.CO%3B2-2
http://www.e-publications.org/srv/qe/linkserver/openurl?rft_dat=bib:7/bickel2011method&rfe_id=urn:sici%2F1759-7323%282020%2911%3A4%3C1325%3AECIDNG%3E2.0.CO%3B2-2
http://www.e-publications.org/srv/qe/linkserver/openurl?rft_dat=bib:9/bollobasphase2007&rfe_id=urn:sici%2F1759-7323%282020%2911%3A4%3C1325%3AECIDNG%3E2.0.CO%3B2-2
http://www.e-publications.org/srv/qe/linkserver/openurl?rft_dat=bib:11/bramoulle2009identification&rfe_id=urn:sici%2F1759-7323%282020%2911%3A4%3C1325%3AECIDNG%3E2.0.CO%3B2-2
http://www.e-publications.org/srv/qe/linkserver/openurl?rft_dat=bib:12/brock2001discrete&rfe_id=urn:sici%2F1759-7323%282020%2911%3A4%3C1325%3AECIDNG%3E2.0.CO%3B2-2
http://www.e-publications.org/srv/qe/linkserver/openurl?rft_dat=bib:13/calvo2009peer&rfe_id=urn:sici%2F1759-7323%282020%2911%3A4%3C1325%3AECIDNG%3E2.0.CO%3B2-2
http://www.e-publications.org/srv/qe/linkserver/openurl?rft_dat=bib:14/card2013peer&rfe_id=urn:sici%2F1759-7323%282020%2911%3A4%3C1325%3AECIDNG%3E2.0.CO%3B2-2
http://www.e-publications.org/srv/qe/linkserver/openurl?rft_dat=bib:16/daskalakis2009complexity&rfe_id=urn:sici%2F1759-7323%282020%2911%3A4%3C1325%3AECIDNG%3E2.0.CO%3B2-2
http://www.e-publications.org/srv/qe/linkserver/openurl?rft_dat=bib:2/bajari2010computing&rfe_id=urn:sici%2F1759-7323%282020%2911%3A4%3C1325%3AECIDNG%3E2.0.CO%3B2-2
http://www.e-publications.org/srv/qe/linkserver/openurl?rft_dat=bib:2/bajari2010computing&rfe_id=urn:sici%2F1759-7323%282020%2911%3A4%3C1325%3AECIDNG%3E2.0.CO%3B2-2
http://www.e-publications.org/srv/qe/linkserver/openurl?rft_dat=bib:3/bajari2010identification&rfe_id=urn:sici%2F1759-7323%282020%2911%3A4%3C1325%3AECIDNG%3E2.0.CO%3B2-2
http://www.e-publications.org/srv/qe/linkserver/openurl?rft_dat=bib:6/bickel2009nonparametric&rfe_id=urn:sici%2F1759-7323%282020%2911%3A4%3C1325%3AECIDNG%3E2.0.CO%3B2-2
http://www.e-publications.org/srv/qe/linkserver/openurl?rft_dat=bib:6/bickel2009nonparametric&rfe_id=urn:sici%2F1759-7323%282020%2911%3A4%3C1325%3AECIDNG%3E2.0.CO%3B2-2
http://www.e-publications.org/srv/qe/linkserver/openurl?rft_dat=bib:7/bickel2011method&rfe_id=urn:sici%2F1759-7323%282020%2911%3A4%3C1325%3AECIDNG%3E2.0.CO%3B2-2
http://www.e-publications.org/srv/qe/linkserver/openurl?rft_dat=bib:9/bollobasphase2007&rfe_id=urn:sici%2F1759-7323%282020%2911%3A4%3C1325%3AECIDNG%3E2.0.CO%3B2-2
http://www.e-publications.org/srv/qe/linkserver/openurl?rft_dat=bib:11/bramoulle2009identification&rfe_id=urn:sici%2F1759-7323%282020%2911%3A4%3C1325%3AECIDNG%3E2.0.CO%3B2-2
http://www.e-publications.org/srv/qe/linkserver/openurl?rft_dat=bib:12/brock2001discrete&rfe_id=urn:sici%2F1759-7323%282020%2911%3A4%3C1325%3AECIDNG%3E2.0.CO%3B2-2
http://www.e-publications.org/srv/qe/linkserver/openurl?rft_dat=bib:13/calvo2009peer&rfe_id=urn:sici%2F1759-7323%282020%2911%3A4%3C1325%3AECIDNG%3E2.0.CO%3B2-2
http://www.e-publications.org/srv/qe/linkserver/openurl?rft_dat=bib:14/card2013peer&rfe_id=urn:sici%2F1759-7323%282020%2911%3A4%3C1325%3AECIDNG%3E2.0.CO%3B2-2
http://www.e-publications.org/srv/qe/linkserver/openurl?rft_dat=bib:16/daskalakis2009complexity&rfe_id=urn:sici%2F1759-7323%282020%2911%3A4%3C1325%3AECIDNG%3E2.0.CO%3B2-2


1346 Michael P. Leung Quantitative Economics 11 (2020)

de Matos, M. G., P. Ferreira, and D. Krackhardt (2014), “Peer influence in the diffusion of
the iPhone 3G over a large social network.” Management Information Systems Quarterly,
38 (4), 1103–1133. [1328]

Fafchamps, M. and F. Gubert (2007), “The formation of risk-sharing networks.” Journal
of Economic Development, 83, 326–350. [1330]

González, F. (2017), “Collective action in networks: Evidence from the Chilean student
movement.” PUC-Chile working paper. [1328]

Graham, B. (2017), “An econometric model of network formation with degree hetero-
geneity.” Econometrica, 85 (4), 1033–1063. [1330]

Granovetter, M. (1978), “Threshold models of collective behavior.” American Journal of
Sociology, 83 (6), 1420–1443. [1328]

Harris, K. and R. Udry (2018), “National longitudinal study of adolescent to adult health
(Add Health), 1994–2008 [public use].” Ann Arbor, MI: Carolina Population Center, Uni-
versity of North Carolina-Chapel Hill [distributor], Inter-University Consortium for Po-
litical and Social Research [distributor]. [1342]

Herings, P. and R. Peeters (2010), “Homotopy methods to compute equilibria in game
theory.” Economic Theory, 42 (1), 119–156. [1327]

Hoxby, C. and G. Weingarth (2005), “Taking race out of the equation: School reassign-
ment and the structure of peer effects.” Stanford working paper. [1329]

Jackson, M. (2010), Social and Economic Networks. Princeton University Press. [1326,
1328, 1342]

Janson, S., T. Luczak, and A. Rucinski (2011), Random Graphs, Vol. 45. John Wiley & Sons.
[1338]

Jia, P. (2008), “What happens when Wal-Mart comes to town: An empirical analysis of
the discount retailing industry.” Econometrica, 76 (6), 1263–1316. [1326]

Judd, K., P. Renner, and K. Schmedders (2012), “Finding all pure-strategy equilibria in
games with continuous strategies.” Quantitative Economics, 3 (2), 289–331. [1327]

Kearns, M. (2007), “Graphical games.” In Algorithmic Game Theory (N. Nisan, T. Rough-
garden, E. Tardos, and V. Vazirani, eds.). Cambridge University Press. Chapter 5. [1326]

Kleinberg, J. and E. Tardos (2006), Algorithm Design. Pearson Education, Inc. [1332]

Leung, M. (2019), “Inference in models of discrete choice with social interactions using
network data.” arXiv preprint arXiv:1911.07106v1. [1326, 1327, 1334]

Leung, M. and R. Moon (2019), “Normal approximation in large network models.” arXiv
preprint arXiv:1904.11060v1. [1326, 1327, 1334]

Leung, M. P. (2020), “Supplement to ‘Equilibrium computation in discrete network
games’.” Quantitative Economics Supplemental Material, 11, https://doi.org/10.3982/
QE1386. [1327]

http://www.e-publications.org/srv/qe/linkserver/openurl?rft_dat=bib:18/godinho2014peer&rfe_id=urn:sici%2F1759-7323%282020%2911%3A4%3C1325%3AECIDNG%3E2.0.CO%3B2-2
http://www.e-publications.org/srv/qe/linkserver/openurl?rft_dat=bib:19/fg2007&rfe_id=urn:sici%2F1759-7323%282020%2911%3A4%3C1325%3AECIDNG%3E2.0.CO%3B2-2
http://www.e-publications.org/srv/qe/linkserver/openurl?rft_dat=bib:21/graham2014&rfe_id=urn:sici%2F1759-7323%282020%2911%3A4%3C1325%3AECIDNG%3E2.0.CO%3B2-2
http://www.e-publications.org/srv/qe/linkserver/openurl?rft_dat=bib:22/granovetter1978threshold&rfe_id=urn:sici%2F1759-7323%282020%2911%3A4%3C1325%3AECIDNG%3E2.0.CO%3B2-2
http://www.e-publications.org/srv/qe/linkserver/openurl?rft_dat=bib:24/herings2010homotopy&rfe_id=urn:sici%2F1759-7323%282020%2911%3A4%3C1325%3AECIDNG%3E2.0.CO%3B2-2
http://www.e-publications.org/srv/qe/linkserver/openurl?rft_dat=bib:28/jia2008happens&rfe_id=urn:sici%2F1759-7323%282020%2911%3A4%3C1325%3AECIDNG%3E2.0.CO%3B2-2
http://www.e-publications.org/srv/qe/linkserver/openurl?rft_dat=bib:29/judd2012finding&rfe_id=urn:sici%2F1759-7323%282020%2911%3A4%3C1325%3AECIDNG%3E2.0.CO%3B2-2
http://arxiv.org/abs/arXiv:1911.07106v1
http://arxiv.org/abs/arXiv:1904.11060v1
https://doi.org/10.3982/QE1386
http://www.e-publications.org/srv/qe/linkserver/openurl?rft_dat=bib:18/godinho2014peer&rfe_id=urn:sici%2F1759-7323%282020%2911%3A4%3C1325%3AECIDNG%3E2.0.CO%3B2-2
http://www.e-publications.org/srv/qe/linkserver/openurl?rft_dat=bib:18/godinho2014peer&rfe_id=urn:sici%2F1759-7323%282020%2911%3A4%3C1325%3AECIDNG%3E2.0.CO%3B2-2
http://www.e-publications.org/srv/qe/linkserver/openurl?rft_dat=bib:19/fg2007&rfe_id=urn:sici%2F1759-7323%282020%2911%3A4%3C1325%3AECIDNG%3E2.0.CO%3B2-2
http://www.e-publications.org/srv/qe/linkserver/openurl?rft_dat=bib:21/graham2014&rfe_id=urn:sici%2F1759-7323%282020%2911%3A4%3C1325%3AECIDNG%3E2.0.CO%3B2-2
http://www.e-publications.org/srv/qe/linkserver/openurl?rft_dat=bib:22/granovetter1978threshold&rfe_id=urn:sici%2F1759-7323%282020%2911%3A4%3C1325%3AECIDNG%3E2.0.CO%3B2-2
http://www.e-publications.org/srv/qe/linkserver/openurl?rft_dat=bib:24/herings2010homotopy&rfe_id=urn:sici%2F1759-7323%282020%2911%3A4%3C1325%3AECIDNG%3E2.0.CO%3B2-2
http://www.e-publications.org/srv/qe/linkserver/openurl?rft_dat=bib:28/jia2008happens&rfe_id=urn:sici%2F1759-7323%282020%2911%3A4%3C1325%3AECIDNG%3E2.0.CO%3B2-2
http://www.e-publications.org/srv/qe/linkserver/openurl?rft_dat=bib:29/judd2012finding&rfe_id=urn:sici%2F1759-7323%282020%2911%3A4%3C1325%3AECIDNG%3E2.0.CO%3B2-2
https://doi.org/10.3982/QE1386


Quantitative Economics 11 (2020) Equilibrium computation in discrete network games 1347

Manski, C. (1993), “Identification of endogenous social effects: The reflection problem.”
Review of Economic Studies, 60 (3), 531–542. [1329]

Mele, A. (2019), “Does school desegregation promote diverse interactions? An equilib-
rium model of segregation within schools.” JHU working paper. [1325]

Menzel, K. (2016), “Inference for games with many players.” Review of Economic Studies,
83 (1), 306–337. [1329]

Miyauchi, Y. (2016), “Structural estimation of pairwise stable networks with nonnegative
externality.” Journal of Econometrics, 195 (2), 224–235. [1325]

Mode, C. (1971), Multitype Branching Processes: Theory and Applications, Vol. 34. Amer-
ican Elsevier Pub. Co. [1338]

Schelling, T. (1978), Micromotives and Macrobehavior. Norton & Company, New York,
NY. [1328]

Sheng, S. (2016), “A structural econometric analysis of network formation games.” UCLA
working paper. [1344]

Soetevent, A. and P. Kooreman (2007), “A discrete-choice model with social interactions:
With an application to high school teen behavior.” Journal of Applied Econometrics, 22
(3), 599–624. [1325]

Turova, T. (2012), “Asymptotics for the size of the largest component scaled to “logn” in
inhomogeneous random graphs.” Arkiv för Matematik, 51 (2), 371–403. [1338]

Xu, H. (2018), “Social interactions in large networks: A game theoretic approach.” Inter-
national Economic Review, 59, 257–284. [1326, 1341, 1342]

Xu, X. and L. Lee (2015), “Estimation of a binary choice game model with network links.”
OSU working paper. [1325]

Co-editor Peter Arcidiacono handled this manuscript.

Manuscript received 10 July, 2019; final version accepted 22 June, 2020; available online 9 July,
2020.

http://www.e-publications.org/srv/qe/linkserver/openurl?rft_dat=bib:35/manski1993identification&rfe_id=urn:sici%2F1759-7323%282020%2911%3A4%3C1325%3AECIDNG%3E2.0.CO%3B2-2
http://www.e-publications.org/srv/qe/linkserver/openurl?rft_dat=bib:37/menzel2016inference&rfe_id=urn:sici%2F1759-7323%282020%2911%3A4%3C1325%3AECIDNG%3E2.0.CO%3B2-2
http://www.e-publications.org/srv/qe/linkserver/openurl?rft_dat=bib:38/miyauchi2016structural&rfe_id=urn:sici%2F1759-7323%282020%2911%3A4%3C1325%3AECIDNG%3E2.0.CO%3B2-2
http://www.e-publications.org/srv/qe/linkserver/openurl?rft_dat=bib:42/soetevent2007discrete&rfe_id=urn:sici%2F1759-7323%282020%2911%3A4%3C1325%3AECIDNG%3E2.0.CO%3B2-2
http://www.e-publications.org/srv/qe/linkserver/openurl?rft_dat=bib:43/turovaasymptotics2012&rfe_id=urn:sici%2F1759-7323%282020%2911%3A4%3C1325%3AECIDNG%3E2.0.CO%3B2-2
http://www.e-publications.org/srv/qe/linkserver/openurl?rft_dat=bib:44/xu2015&rfe_id=urn:sici%2F1759-7323%282020%2911%3A4%3C1325%3AECIDNG%3E2.0.CO%3B2-2
http://www.e-publications.org/srv/qe/linkserver/openurl?rft_dat=bib:35/manski1993identification&rfe_id=urn:sici%2F1759-7323%282020%2911%3A4%3C1325%3AECIDNG%3E2.0.CO%3B2-2
http://www.e-publications.org/srv/qe/linkserver/openurl?rft_dat=bib:37/menzel2016inference&rfe_id=urn:sici%2F1759-7323%282020%2911%3A4%3C1325%3AECIDNG%3E2.0.CO%3B2-2
http://www.e-publications.org/srv/qe/linkserver/openurl?rft_dat=bib:38/miyauchi2016structural&rfe_id=urn:sici%2F1759-7323%282020%2911%3A4%3C1325%3AECIDNG%3E2.0.CO%3B2-2
http://www.e-publications.org/srv/qe/linkserver/openurl?rft_dat=bib:42/soetevent2007discrete&rfe_id=urn:sici%2F1759-7323%282020%2911%3A4%3C1325%3AECIDNG%3E2.0.CO%3B2-2
http://www.e-publications.org/srv/qe/linkserver/openurl?rft_dat=bib:42/soetevent2007discrete&rfe_id=urn:sici%2F1759-7323%282020%2911%3A4%3C1325%3AECIDNG%3E2.0.CO%3B2-2
http://www.e-publications.org/srv/qe/linkserver/openurl?rft_dat=bib:43/turovaasymptotics2012&rfe_id=urn:sici%2F1759-7323%282020%2911%3A4%3C1325%3AECIDNG%3E2.0.CO%3B2-2
http://www.e-publications.org/srv/qe/linkserver/openurl?rft_dat=bib:44/xu2015&rfe_id=urn:sici%2F1759-7323%282020%2911%3A4%3C1325%3AECIDNG%3E2.0.CO%3B2-2

	Introduction
	Outline
	Notation

	Graphical games
	Econometrician's information
	Network formation model
	Strategic neighborhoods
	Algorithm
	Assumptions
	Algorithmic complexity
	Multinomial choice
	Ordered choice

	Numerical illustrations
	Binary choice
	Ordered choice

	Conclusion
	References

