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This supplement is organized as follows. In Section SA.1, we state additional ex-
amples and remarks referred to in the main body of the paper. Next, Section SA.2
provides the proof of the main result, Theorem 1. Technical lemmas used to prove
the result are stated in Section SA.3. Finally, Section SA.4 and Section SA.5 pro-
vide algorithms and complexity bounds for computing equilibria in undirected
and directed network formation games, respectively.

SA.1. Additional examples and discussion

Example SA.1.1. This example illustrates the interpretation of Assumption 2 in the bi-
nary choice model. It is referenced in Example 4 of the main text. As in that exam-
ple, consider the case of an exogenous network Aij ⊥⊥ Rc

j . Unlike that example, we in-
stead consider the random connections model for A (Meester and Roy (1996)). Suppose
Ti = (ρi� ξi), where ρi has dimension dρ and ξi dimension dξ. Link formation is deter-
mined by

Aij = gn(Ti�Tj� ζij) ≡ 1
{
V

(
r−1
n ‖ρi − ρj‖� ξi� ξj� ζij

)
> 0

}
�

where V (·) is a real-valued function, ρi is continuously distributed with density f , and
rn is a scaling constant defined below, analogous to ρn in Example 4. Leung and Moon
(2019) proved a CLT for a generalization of this model allowing for strategic interactions.
For simplicity, suppose ζij ⊥⊥ Ti�Tj . We assume V (·) is decreasing in its first compo-
nent to capture homophily in ρi, which may represent, for example, geographic loca-
tion. A special case is the random geometric graph where gn(·) equals one if and only
if r−1

n ‖ρi − ρj‖ < 1, which states that agents only link with those in a fixed geographic
neighborhood (Penrose (2003)).

Suppose V (·) is increasing in its second and third components. Let φ(· | ρ) be the
conditional density of ξi given ρi = ρ, and suppose there exists a density φ∗(·) that
stochastically dominates φ(· | ρ) for all ρ. Then

nP
(
Aij = 1 | Ti = (ρ�ξ)

)
= n

∫
R
dρ

∫
R
dξ

E
[
gn(Ti�Tj� ζij) | Ti = (ρ�ξ)�ρj = ρ′� ξj = ξ′]φ(

ξ′ | ρ′)f (
ρ′)dξ′ dρ′
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= nr
dρ
n

∫
R
dρ

∫
R
dξ

P
(
V

(∥∥ρ− ρ̃′∥∥� ξ�ξ′� ζij
)
> 0

)
×φ

(
ξ′ | ρ+ rn

(
ρ′ − ρ

))
f
(
ρ+ rn

(
ρ′ − ρ

))
dξ′ dρ̃′�

where the second line uses the fact that r−1
n ‖ρ − ρ′‖ = ‖ρ − (ρ + r−1

n (ρ′ − ρ))‖ and the
change of variables ρ+ r−1

n (ρ′ − ρ) �→ ρ̃′.
Suppose rn = (κ/n)1/dρ , and let f̄ = supx f (x). Then the last line is bounded above by∫

R
dρ

∫
R
dξ
κf̄P

(
V

(∥∥ρ̃′∥∥� ξ�ξ′� ζij
)
> 0

)︸ ︷︷ ︸
h((ρ�ξ)�(ρ̃′�ξ′))

φ∗(ξ′)dξ′ dρ̃′︸ ︷︷ ︸
dμ((ρ̃′�ξ′))

�

where we replace ‖ρ− ρ̃′‖ with ‖ρ̃′‖, since the integral is over Rdρ .
We have calculated that

sup
n

nP(Aij = 1 | Ti = t)≤
∫
R
dρ

∫
R
dξ
h
(
t�

(
ρ̃′� ξ′))φ∗(ξ′)dξ′ dρ̃′� (SA.1.1)

Since types are independent, (2.10) holds. We therefore define the quantities in Assump-
tion 2 as follows: k = dρ, ϕ(t� t ′) = E[Rc

j ]h(t� t ′), μk the Lebesgue measure on Rdρ , and
μ−k the probability law induced by the density φ∗(·). It follows that

‖λ‖m�k = E
[
Rc

j

]
× sup

tk∈Rk

(∫
Rd−k

(∫
Rk

(∫
Rd−k

h
(
(tk� t−k)�

(
t ′k� t

′
−k

))2
φ∗(t ′−k

)
dt ′−k

)1/2
dt ′k

)2

×φ∗(t−k)dt−k

)1/2
�

Then by Jensen’s inequality, ‖λ‖m�k < 1 implies

E
[
Rc

j

]
<

(
sup
t∈Rd

∫
Rk

∫
Rd−k

h
(
t�

(
t ′k� t

′
−k

))
φ∗(t ′−k

)
dt ′−k dt ′k

)−1

≤
(

sup
t

sup
n

nP(Aij = 1 | Ti = t)
)−1

�

where the second inequality uses (SA.1.1). This implies that the strength of strategic in-
teractions is bounded by the inverse of the limiting expected degree of any agent, which
is analogous to (2.13).

Remark SA.1.1. We expand on the point made at the end of Example 4 regarding the
behavioral implications of Assumption 2, (2.8), and (2.13). Consider a counterfactual
policy intervention that increases the outcome of an agent i by one unit, and suppose
her neighbors simultaneously myopically best respond once to the policy change. Then
under (2.13), each of her neighbors’ actions increase by β, so the total change in out-
comes among i’s neighbors is β

∑
j Aij , which is less than one.
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The row-normalized model under (2.8) has a similar implication. The total change
in the outcome of i’s neighbor j is now β(

∑
kAjk)

−1, so the total change in i’s neighbors’
outcomes is

∑
j Aijβ(

∑
kAjk)

−1. The average total change over all agents i counterfac-
tually subjected to the policy (assuming for simplicity their network neighborhoods do
not overlap) is

1
n

∑
i

∑
j

Aijβ
1∑

k

Ajk

= β
1
n

∑
j

∑
i

Aij

∑
k

Ajk

= β< 1�

Hence, the total change in neighbors’ outcomes, on average, is less than one.
Finally, consider our model under Assumption 2. The total change in i’s neighbors

resulting from the policy intervention is at most
∑

j AijRc
j , since if Rc

j = 1, then agent i’s
action is the same regardless of others’ actions. Assumption 2 implies that this quantity
is less than one in expectation.

Example SA.1.2. This example illustrates the interpretation of Assumption 2 in the
multinomial choice setting. Consider Example 5, and suppose K = 2, β��k = 0 for all
� �= k, and β��� ≥ 0 for all �. That is, there are three elements in the choice set, and pay-
offs from choosing the �th action only depend on the fraction of friends choosing action
� and not any other action k. Then

Rc
i = 1

{−β2�2 ≤ (Xi2 −Xi1)
′θ2 + (εi2 − εi1) ≤ β1�1

}
× 1

{−β1�1 ≤ (Xi1 −Xi0)
′θ2 + (εi1 − εi0)≤ β0�0

}
× 1

{−β2�2 ≤ (Xi2 −Xi0)
′θ2 + (εi2 − εi0)≤ β0�0

}
�

Suppose the network is realized according to the inhomogeneous random graph model
of Example 4. Then following the calculations in that example, Assumption 2 is equiva-
lent to (2.12). In the special case where the indicators in the previous equation are inde-
pendent, E[Rc

j ] = γ21γ10γ20, where

γ�k = P
(−β��� ≤ (Xi� −Xik)

′θ2 + (εi� − εik) ≤ βk�k

)
= P

(
(Xi� −Xik)

′θ2 +β��� + (εi� − εik) ≥ 0
)

− P
(
(Xi� −Xik)

′θ2 −βk�k + (εi� − εik)≥ 0
)
�

This is the partial-equilibrium marginal effect of changing all of i’s neighbors from ac-
tion k to action � on i’s propensity to choose action �. Hence, γ�k measures the strength
of interactions and is equivalent to (2.9) in the case where K = 1 and payoffs are appro-
priately normalized.

SA.2. Proof of Theorem 1

Proof of Theorem 1. Line 1. Given T , A, computing D takes O(n) evaluations of the
payoff function, since we have to compute Rc

k for each agent k. Then, as discussed in Re-
mark 1, computing the set of weakly connected components (strategic neighborhoods)
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takes O(n + L) time, where L is the number of links in D, assuming the graph is stored
as an adjacency list. The expected number of links is 0�5E[∑i

∑
j Dij] ≤ n2E[Dij], which

is O(n) by Assumption 2. Hence, L = Op(n), so line 1 of the algorithm has complexity
Op(n).1

Line 2. For each strategic neighborhood S(C), the algorithm verifies whether each
element of Y(S(C)�T) is a Nash equilibrium. The size of this set is 2|C|. For each candi-
date action profile, we have to verify the equilibrium conditions by evaluating the payoff
function for each agent in C, resulting in at most |C|2|C| evaluations for the whole set.
Repeated for each neighborhood, the for-loop takes∑

C∈C(T�A)
|C|2|C| ≤ n max

C∈C(T�A)
2|C|

evaluations. By Lemma SA.2.1, which uses Assumptions 2 and 3, this quantity is
Op(n

1+q), where q is defined in the statement of this theorem.
Line 3. Under Assumption 1, we can apply Lemma SA.2.3, which yields( ×

C∈C(T�A)
ENE(TS(C)�AS(C))

∣∣
C

)
= ENE(T�A)� (SA.2.1)

Therefore, the algorithm has the desired output.

Lemma SA.2.1. Under Assumptions 2 and 3,

max
C∈C(T�A)

2|C| =Op
(
nq

)
�

where q is defined in Theorem 1.

Proof. Let β = ‖λ‖m�k. By Assumption 2, there exists ε > 0 such that (1 + ε)β < 1. For
any such ε and m> 0,

P
(

max
C∈C(T�A)

2|C| >mnq
)

≤ nP
(|C|> (q logn+ logm)/ log 2

)
≤ cn1−q(log 2)−1 log((1+ε)β)−1

m−(log 2)−1 log((1+ε)β)−1

for some c > 0. The first line uses the union bound and the second Lemma SA.3.6 (which
we can apply due to Assumptions 2 and 3). Since the exponent on m is negative in the
last line, the last line is o(1) as we take m�n → ∞, if we pick ε > 0 such that the exponent
on n is less than or equal to zero, or equivalently,

q(log 2)−1 log
(
(1 + ε)β

)−1 ≥ 1 ⇔ q ≥ log 2

log
1

(1 + ε)β

� (SA.2.2)

1In the statement of the theorem, we measure work in terms of evaluations of the payoff function. A small
complication to our argument is that depth-first search does not ever evaluate the payoff function. Instead,
the unit of work is querying an adjacency list to reveal a neighbor of an agent in the graph. However, this
will not have a higher order of complexity than evaluating a nontrivial payoff function, an assumption we
implicitly maintain in this argument.
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It thus suffices to establish that such an ε exists. Since ε ∈ (0�β−1 − 1), the fraction on
the right-hand side is a continuous function of ε with range (log 2/ logβ−1�∞). Further-
more, q > log 2/ logβ−1 by assumption, so by the intermediate value theorem, we can
indeed choose ε such that (SA.2.2) holds. This prove the claim.

Lemma SA.2.2. Let C ∈ C(T�A). Under Assumption 1,

ENE(TS(C)�AS(C)) = ENE(T�A)|S(C)�

Proof. Step 1. We first prove that

ENE(TS(C)�AS(C)) ⊆ ENE(T�A)|S(C)�

Let Y ∈ ENE(TS(C)�AS(C)) and Y ′ ∈ ENE(T�A). Construct an action profile Y∗ by defining

Y ∗
k =

{
Yk if k ∈ S(C)�

Y ′
k otherwise.

That is, we take Y ′ and replace the actions of all agents in S(C) with the actions dictated
by Y . It suffices to show Y∗ ∈ ENE(T�A). For this purpose, fix two arbitrary agents i ∈ S(C)

and j ∈ Nn\S(C).
We show that Y ∗

i is a best response for i to Y∗ in the sense that (2.1) holds. There are
two cases to consider. First, suppose i ∈ S(C)\C. Then by definition of S(C), we have
Rc

i = 0, which means i’s action is a best response regardless of the actions chosen by
others. The second case to consider is i ∈ C. Then since j /∈ S(C), i and j must not be
connected in the network D because, by definition, C contains all agents k connected
to i such that Rc

k = 1, and S(C) adds to this set all agents k connected to i such that
Rc

k = 0. Since i and j are not connected, i’s payoffs are not a function of j’s action by As-
sumption 1. Since j is any arbitrary agent not in S(C), given that Y ∈ ENE(TS(C)�AS(C)),
it follows that Y ∗

i is a best response.
Next, we show that Y ∗

j is a best response for j to Y∗. Suppose, for i previously defined
above, that i ∈ S(Nn\C). Then it must be the case that i’s action is robust in the sense
that Rc

i = 0. Therefore, Y ′
i = Yi, so i’s action under Y ′ is the same under Y∗. On the other

hand, consider i /∈ S(Nn\C). Since j ∈ Nn\C by assumption, we must have Aij = 0, as
argued in the previous paragraph. Then by Assumption 1, j’s payoffs are not a function
of i’s action.

We have therefore established that (1) the only components of vectors Y ′ and Y∗ that
may differ are the actions of agents i /∈ S(Nn\C), and (2) the payoffs of any j ∈ Nn\C are
not functions of the actions of such agents i. Then since Y ′ ∈ ENE(T�A), it follows that
Y ∗
j is a best response to Y∗ for any j ∈ Nn\C, in particular for j ∈ Nn\S(C), which proves

the desired claim.
Step 2. We prove that

ENE(TS(C)�AS(C)) ⊇ ENE(T�A)|S(C)�
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Let Y ∈ ENE(T�A)|S(C). By definition, there exists Y ′ ∈ ENE(T�A) such that Y = Y ′
S(C). Fix

two arbitrary agents i ∈ S(C) and j ∈ Nn\S(C). There are two cases to consider. First,
suppose i ∈ S(C)\C. Then by definition of S(C), we have Rc

i = 0, which means i’s action
is optimal regardless of the actions chosen by others. The second case to consider is
i ∈ C. Then since j /∈ S(C), as argued in step 1, Aij = 0, so i’s payoffs are not a function of
j’s action. Since i, j are arbitrary, it follows that Y ∗

i is optimal in the game where the set
of agents is restricted to S(C). Hence, Y ∈ ENE(TS(C)�AS(C)), as desired.

Lemma SA.2.3. Under Assumption 1, (SA.2.1) holds.

Proof. Step 1. Let Y∗ ∈×C∈C(T�A) ENE(TS(C)�AS(C))|C . This set is well-defined in (2.7)
because C(T�A) partitions Nn. Consider any i ∈ Nn, and let C be the element of C(T�A)
containing i. We first prove that

Y ∗
S(C) ∈ ENE(TS(C)�AS(C))� (SA.2.3)

By construction, there exists Y ∈ ENE(TS(C)�AS(C)) such that the subvector of Y ∗
S(C) on

C equals YC . Furthermore, the subvector of Y ∗
S(C) on S(C)\C equals YS(C)\C because

agents in this set have robust actions by definition. Therefore, Y ∗
S(C) = Y , which proves

(SA.2.3).
This establishes that, in the game where the set of players is given by S(C), Y ∗

i is a
best response for i to Y∗

S(C) in the sense of (2.1). In fact, Y ∗
i is a best response to Y∗ in the

game with all n players. This is because i’s payoffs are not a function of actions of agents
j /∈ S(C) by the second paragraph of the proof of Lemma SA.2.2. We have thus proved
that Y∗ ∈ ENE(T�A). Hence,

×
C∈C(T�A)

ENE(TS(C)�AS(C))
∣∣
C

⊆ ENE(T�A)�

Step 2. We prove the ⊇ direction. Let Y∗ ∈ ENE(T�A). For any C ∈ C(T�A), Y ∗
S(C) ∈

ENE(TS(C)�AS(C)) by Lemma SA.2.2. Hence, Y ∗
C ∈ ENE(TS(C)�AS(C))|C , so

Y∗ ∈ ×
C∈C(T�A)

ENE(TS(C)�AS(C))
∣∣
C
�

as desired.

SA.3. Tail bound for component sizes

This section proves an exponential tail bound on the size of any component of a certain
random graph in the “subcritical” regime where an analog of Assumption 2 holds. The
result is used to prove our main theorems on algorithmic complexity. The first lemma
in Section SA.3.1 below generalizes Lemma 9 of Leung (2019) to models without ho-
mophily. Our proof also provides a complete argument that fills in some details skimmed
over in the proof of the latter result.

We consider the following random graph model. Suppose each agent i is endowed
with a type τi ∈ Rd , i.i.d. across agents with distribution �. Let τ = (τi)

n
i=1 and ζ be an n×
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n matrix with zeros on the diagonal, where the off-diagonal elements ζij are distributed
i.i.d. Let Γ be a directed network on Nn such that

Γij = γn(τi� τj� ζij)

for all i� j ∈ Nn, where γn is a {0�1}-valued function that may depend on the network size
n. We apply the results of this section to networks D defined in Sections 2, SA.4, and SA.5,
all of which have the same structure as Γ .

Let C∗(τ�ζ) be the set of strongly connected components of Γ . We wish to obtain
exponential tail bounds on the size of any C ∈ C∗(τ�ζ). The technique is to stochastically
bound component sizes by those of certain multitype branching processes and then
show that the latter quantities have the required tail properties. Our results require the
following assumptions.

Assumption SA.3.1. Assumption 2 holds with Γ in place of D.

Assumption SA.3.2. Assumption 3 holds with Γ in place of D.

SA.3.1 Branching process

Let μ and ϕ be defined as in Assumption SA.3.1. Denote by Pϕ(t) a Poisson process on
Rd with intensity ϕ(t� t ′)dμ(t ′). Let Xϕ(t) be a multitype Galton–Walton branching pro-
cess with type space Rd , initialized at a particle of type t, where a particle of type t ′ is
replaced in the next generation by a set of particles (the offspring of t ′) distributed ac-
cording to Pϕ(t

′). For a formal definition of this process see, for example, Mode (1971).
In brief, this is a discrete-time process where the first generation consists of a single
particle of type t. The particles in the second generation constitutes the offspring of t,
characterized by types that are distributed according to Pϕ(t). Let t1� � � � � tm be the types
of the second generation. The third generation consists of the offspring of the second
generation {Pϕ(ti)}mi=1, which are i.i.d. processes. This process continues indefinitely.

This branching process is of interest because the expected number of offspring of a
particle of type t is ∫

Rd
ϕ

(
t� t ′

)
dμ

(
t ′
)
�

which is the upper bound on the conditional expected degree of an agent of type t in the
graph Γ by Assumption SA.3.1.

Let |Xϕ(t)| be the total population of the branching process, that is, the total num-
ber of particles generated. We show that this stochastically dominates |Ct | for any Ct ∈
C∗(τ�ζ), for an appropriate choice of ϕ and t.

Lemma SA.3.1. Let Ci ∈ C∗(τ�ζ) be the component containing agent i ∈ Nn. Under As-
sumptions SA.3.1 and SA.3.2, for any ε > 0 and n sufficiently large, |Ci| is stochastically
dominated by |X(1+ε)ϕ(τi)|, where ϕ is defined in Assumption SA.3.1 and (1 + ε)ϕ is the
mapping (t� t ′) �→ (1 + ε)ϕ(t� t ′).
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Proof. Step 1. We explore Ci using a breadth-first search on D starting at i.2 This is a
discrete-time process, where at each time period r = 0�1� � � � we maintain the following
three sets of agents: the set of removed agents Rr , the set of active agents Ar , and the set
of unexplored agents Ur . It will be convenient to represent Ar as a queue in the computer
science sense.3 The process evolves as follows:

• At time r = 0, initialize A0 = {i}, U0 = Nn\{i}, and R0 = ∅.

• At time r = 1, we activate the network neighbors of the only active agent i and then
deactivate i, moving her to the removed set. That is, we update A0 to A1 by removing
(dequeueing) i and then adding to the end of the queue (enqueueing) the set of el-
ements {j ∈ Nn : Γij = 1} in arbitrary order. Also we update U1 = U0\A1 and R1 = {i}.

• At time r > 1, we take the first agent in the queue Ar−1, say j, activate all her unex-
plored neighbors, and deactivate and remove her. That is, we update Ar−1 to Ar by
dequeueing j and enqueueing {k ∈ Nn : Γjk = 1�k ∈ Ur−1} in arbitrary order. Also, we
update Ur = Ur−1\Ar and Rr = Rr−1 ∪ {j}.

Note that at each time r, we explore Br(1) ≡ |Ar | − |Ar−1| + 1 new agents, which are
precisely those unexplored agents that are neighbors of the nominated agent j. Hence,
the process explores Ci, and

1 +
∞∑
r=1

Br(1) = |Ci|� (SA.3.1)

Step 2. We modify the breadth-first search to create a process whose size stochasti-
cally dominates it. This time we only need to maintain a queue of active agents Ar at
each time period r. The process evolves as follows:

• At time r = 0, initialize A0 = {τi}. Note that this process keeps track of agent types
rather than labels, unlike the breadth-first search.

• At time r > 0, choose the first element in the queue Ar−1, say τ∗. Generate {τ̃1}n−1
i=1

i.i.d. with the same distribution as τi. Independently generate {ξi}n−1
i=1 i.i.d., where

ξj is Bernoulli with success probability pn(τ
∗� τ̃j), where pn(t� t

′) = P(Γij = 1 | τi =
t� τj = t ′). Update Ar−1 to Ar by dequeueing τ∗ and enqueueing {τ̃j : ξj = 1� j ≤ n} in
arbitrary order. Define Br(2) = ∑

j≤n−1 ξj .

2The technique of exploring a component using a search process and approximating or bounding the
latter by a branching process is a standard argument for obtaining stochastic bounds on component sizes
of random graphs (e.g., Janson, Luczak, and Rucinski (2011, Chapter 3)). For some recent examples study-
ing classes of graphs similar to ours, see Bollobás, Janson, and Riordan (2007) and Bollobás, Janson, and
Riordan (2011). The specific line of argument we use is somewhat related to the coupling in Section 3 of the
latter paper. However, to our knowledge, our result has not been previously established for the general class
of graphs considered here.

3This is conceptualized as a horizontal collection of elements ordered from left to right with two asso-
ciated operations. The enqueue operation adds an element to the right side of the queue. The dequeue

operation removes an element from the left side of the queue.
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By construction,
s∑

r=1

Br(2) �
s∑

r=1

Br(1) ∀s > 1� (SA.3.2)

where � denotes stochastic dominance. This is because (1) {τ̃j : ξj = 1� j ≤ n− 1} has the
same distribution as the set of types associated with neighbors of an agent with type τ∗
in Γ , and (2) the breadth-first search only restricts to “unexplored” agents when adding
new agents to the active set at each time r > 0. In particular, note that Br(1) has the same
distribution as

∑
j≤n−|Rr−1| ξj , conditional on the nominated node having type τ∗, which

is clearly stochastically dominated by
∑

j≤n−1 ξj .
Step 3. We represent the process constructed in step 2 in a more convenient fashion

in preparation for a stochastic dominance argument in step 4. Instead of defining Ar for
r > 0 as in step 2, let us generate an independent binomial random variable N with n− 1
trials and success probability

p∗ = sup
t�t ′

pn
(
t� t ′

)
�

Instead of ξ1� ξ2� � � � , we generate ξ̃1� ξ̃2� � � � i.i.d. independently of N , where ξ̃j is
Bernoulli with success probability pn(τ

∗� τ̃j)/p∗. Finally, we construct Ar by removing τ∗
from the queue Ar−1 and adding {τ̃j : ξ̃j = 1� j ≤ N} to the end of the queue in arbitrary
order. Let Br(3) = ∑

j≤N ξ̃j . Then by construction,

s∑
r=1

Br(3)
d=

s∑
r=1

Br(2) ∀s > 1� (SA.3.3)

Step 4. We modify the process in step 3 to obtain one that stochastically dominates it
in terms of size. Recall the definition of N and p∗ from the previous step. Fix any ε > 0.
Since supn p

∗ < 1 by Assumption SA.3.2(a), N is a nondegenerate binomial random vari-
able. It is well known that, for n sufficiently large, this is stochastically dominated by a
Poisson random variable N ′ with intensity (1 + ε)(n − 1)p∗ (see, e.g., Bollobás, Janson,
and Riordan (2007, proof of Theorem 12.5)). We may then couple N ′, N such that N ′ ≥N

a.s.
Consider a modification of the process in step 3 where we replace N with N ′, where

N ′ is generated independently of all other quantities. Using the notation in the previous
step, let η(τ∗) be the point process induced by the random set {τ̃j : ξ̃j = 1� j ≤ N ′} (see,
e.g., Last and Penrose (2017, Definition 2.4)), where τ∗ is the first element of the queue
Ar−1 (so the random variables in the set are generated at time r of the modified process).
Let Br(4) be the number of elements in η(τ∗). Then

s∑
r=1

Br(4) ≥
s∑

r=1

Br(3) a.s. ∀s > 1 (SA.3.4)

under the coupling.
Step 5. Let η′(τ∗) be the Poisson point process on Rd with intensity measure

(1 + ε)(n− 1)pn
(
τ∗� t ′

)
d�

(
t ′
)
� (SA.3.5)
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where � is the distribution of τi. By Lemma SA.3.2, η(τ∗) has the same distribution as
η′(τ∗). By Assumption SA.3.1, the mean of the intensity measure (SA.3.5) is dominated
by that of (1 + ε)ϕ(τ∗� t ′)dμ(t ′). Thus, consider a modification of the process in step 4,
where at each period r > 0, we replace Br(4) with Br(5) = |P(1+ε)ϕ(τ

∗)|, where τ∗ is the
first element of the queue Ar−1. Then

s∑
r=1

Br(5) �
s∑

r=1

Br(4) ∀s > 1� (SA.3.6)

Furthermore, since P(1+ε)ϕ(τ
∗) is the same as the offspring distribution of the branching

process X(1+ε)ϕ(τi),

1 +
∞∑
r=1

Br(5)
d= ∣∣X(1+ε)ϕ(τi)

∣∣� (SA.3.7)

This is quite evident from comparing the first few generations. For example, the second
generation of the branching process has the same distribution as B1(5), as noted above.
Conditional on the size of this generation being m, the third generation of the branch-
ing process has the same distribution as B2(5) + · · · + B2+m−1(5) by construction of the
queue, and so on.

Therefore, combining (SA.3.1), (SA.3.2), (SA.3.3), (SA.3.4), (SA.3.6), and (SA.3.7), we
have shown that ∣∣X(1+ε)ϕ(τi)

∣∣ � |Ci|�
as desired.

Lemma SA.3.2. Under the assumptions of Lemma SA.3.1, η(τ∗) d= η′(τ∗), where these
quantities are defined in steps 4 and 5 of Lemma SA.3.1.

Proof. By Proposition 2.10(iii) of Last and Penrose (2017), it suffices to show equiva-
lence of their respective Laplace functionals conditional on τ∗ = t. Let u : Rd → [0�∞]
be a measurable function. Condition on τ∗ = t. The Laplace functional of η(t) is

E exp
{
−

∫
u
(
t ′
)

dη
(
t ′
)}

= E
N ′∏
j=1

exp
{−ξ̃ju(τ̃j)

}

= E
(∫

E
[
exp

{−ξ̃ju(τ̃j)
}|τj = t ′

]
d�

(
t ′
))N ′

= E
(∫ [(

e−u(t ′) − 1
)pn

(
t� t ′

)
p∗ + 1

]
d�

(
t ′
))N ′

= exp
{∫ (

e−u(t ′) − 1
)
(1 + ε)(n− 1)pn

(
t� t ′

)
d�

(
t ′
)}

� (SA.3.8)
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where the last line uses the fact that

E
[
wPoisson(λ)] = eλ(w−1)

(e.g., Bollobás, Janson, and Riordan (2007, proof of Theorem 12.5)).
Let ρ = ∫

pn(t� t
′)d�(t ′). Let η′′(t) be the mixed binomial process with mixing dis-

tribution Poisson((1 + ε)(n − 1)ρ) and sampling distribution equal to the probability
measure L satisfying L(A) = ∫

t ′∈A ρ−1pn(t� t
′)d�(t ′) (Last and Penrose (2017, Defini-

tion 3.4)). By Proposition 3.5 of Last and Penrose (2017),

η′′(t) d= η′(t)�

It remains to calculate the Laplace functional of η′′(t). For N ′′ ∼ Poisson((1+ε)(n−1)ρ),
this is given by

E exp
{
−

∫
u
(
t ′
)

dη′′(t ′)}

= E
(∫

exp
{−u

(
t ′
)}
ρ−1pn

(
t� t ′

)
d�

(
t ′
))N ′′

= exp
{∫

e−u(t ′)(1 + ε)(n− 1)pn
(
t� t ′

)
d�

(
t ′
) − (1 + ε)(n− 1)ρ

}
�

which equals (SA.3.8).

SA.3.2 Exponential tail bound

We next prove that the size of the branching process X(1+ε)ϕ(t) has exponential tails. For
any constant α, let

Jα(t) = E
[
α|X(1+ε)ϕ(t)|] (SA.3.9)

and F be the functional satisfying

F(g)(t) =
∫
Rd

g
(
t ′
)
ϕ

(
t� t ′

)
dμ

(
t ′
)

for any bounded function g : Rd → R. That is, F takes a function g as its argument, and
F(g) is a function with domain Rd and range R. Let

σε(t) = (1 + ε)

∫
Rk

(∫
Rd−k

ϕ
(
t�

(
t ′k� t

′
−k

))2
dμ−k

(
t ′−k

))1/2
dμk

(
t ′k

)
�

Lemma SA.3.3. Let β = ‖λ‖k�m, the latter defined in Assumption SA.3.1. Under Assump-
tions SA.3.1 and SA.3.2, for any ε ∈ (0�β−1 − 1) and α ∈ (1� ((1 + ε)β)−1),

sup
t

Jα(t) <∞�
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Proof. We follow the proof of Theorem 2.5 in Turova (2012). We note for later that

inf
t
σ0(t) > 0 and sup

t
σ0(t) < ∞ (SA.3.10)

under Assumption SA.3.2.
We next construct a bounded function h ≥ 1 that satisfies the conditions of Lem-

ma SA.3.5. By Lemma SA.3.4, the existence of h implies the desired conclusion. For any
constant c, define the function

γc = F
(
ecσε − 1

)
�

By the Cauchy–Schwarz inequality,

γc(t) ≤ (1 + ε)

∫
Rk

(∫
Rd−k

ϕ
(
t�

(
t ′k� t

′
−k

))2
dμ−k

(
t ′−k

))1/2
dμk

(
t ′k

)
︸ ︷︷ ︸

σε(t)

×
(∫

Rd−k

(
ecσε((t

′
k�t

′
−k)) − 1

)2
dμ−k

(
t ′−k

))1/2

︸ ︷︷ ︸
K(c�t ′k)

� (SA.3.11)

Note that, as a function of c, for any t, K(c� t) is differentiable on [0� a] for some a > 0 by
dominated convergence and (SA.3.10). For c small, by the Cauchy–Schwarz inequality,
there exists a universal constant M > 0 such that

K′(c� t ′k) ≤M

(∫
Rd−k

σε
((
t ′k� t

′
−k

))2 exp
{
2cσε

((
t ′k� t

′
−k

))}
dμ−k

(
t ′−k

))1/2
�

For c small enough, this is finite by (SA.3.10). The previous equation yields

lim
c↓0

K′(c� t ′k) ≤ sup
t ′k

(∫
Rd−k

σε
((
t ′k� t

′
−k

))2
dμ−k

(
t ′−k

))1/2
= (1 + ε)‖λ‖k�m�

Call the right-hand side βε. By Assumption SA.3.1, for ε sufficiently small, βε < 1.
Then by the mean value theorem, for c sufficiently small and any t,

K(c� t) < βεc�

which, by (SA.3.11), implies

γc < βεcσε� (SA.3.12)

Fix α> 1, and define

γ̃c ≡ αF
(
eαcσε − 1

) = αγαc�

By (SA.3.12), for c sufficiently small,

γ̃c = αγαc ≤ α2cβεσε� (SA.3.13)
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Now define the function

h= α
(
eαcσε − 1

) + 1�

By (SA.3.10), supt h(t) < ∞. To complete the proof, it suffices to show that

αexp
{
F(h− 1)

} ≤ h� (SA.3.14)

Using (SA.3.13),

αexp
{
F(h− 1)

} = αexp
{
αF

(
eαcσε − 1

)} = αexp{γ̃c} ≤ αexp
{
α2cβεσε

}
� (SA.3.15)

Suppose α ∈ (1� δ/βε) for some δ ∈ (βε�1). Then αexp{α2cβεx} ≤ αexp{αcδx} for any
x≥ 0. Under (SA.3.10), σε(t) > b for some positive b and all t ∈Rd . Therefore, there exists
α ∈ (1� δ/βε) such that

αexp
{
α2cβεσε

} ≤ α

(
exp{αcδσε} − α− 1

α

)
= α

(
exp{cασε} − 1

) + 1 = h� (SA.3.16)

Thus, (SA.3.15) and (SA.3.16) establish (SA.3.14).

Lemma SA.3.4. For any α ≥ 1, Jα(·) is the minimal solution f ≥ 1 to the functional fixed-
point equation

f = αexp
{
F(f − 1)

}
� (SA.3.17)

Proof. We first prove that Jα(·) is a solution to (SA.3.17). This is a standard branching-
process argument. We first construct a more convenient representation of X(1+ε)ϕ(t).
Observe that we can represent the distribution of its second generation, namely
P(1+ε)ϕ(t), as follows. Partition Rd into cubes with side length one centered at integer-
valued elements of Rd . Label the elements of the partition arbitrarily 1�2� � � � , and let Qk

be the cube associated with label k. For each partition k, let ρk = ∫
t ′∈Qk

ϕ(t� t ′)dμ(t ′),
and draw Nk ∼ Poisson((1 + ε)ρk) independently across partitions. For each partition
k, if Nk > 0, then conditional on Nk, draw types {τ̃ki }Nk

i=1 i.i.d. from the distribution μk

satisfying μk(A) = ρ−1
k

∫
t ′∈A∩Qk

ϕ(t� t ′)dμ(t ′). If Nk = 0, then the set of types is ∅. Then
the proper point process induced by the random set

∞⋃
k=1

{
τ̃ki

}Nk

i=1 (SA.3.18)

(Last and Penrose (2017, Definition 2.4)) has the same distribution as P(1+ε)ϕ(t) by the
proof of Theorem 3.6 of Last and Penrose (2017). The set (SA.3.18) represents the types
of particles associated with the second generation of the branching process.

Observe that the total population has the same distribution as the sum of the total
populations of independent branching processes starting at initial particles of type t ′ for
each t ′ in the second generation (SA.3.18). That is,

∣∣X(1+ε)ϕ(t)
∣∣ d= 1 +

∞∑
k=1

Nk∑
j=1

∣∣X(1+ε)ϕ

(
τ̃kj

)∣∣�
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where conditional on the realization of the second generation (SA.3.18), the associated
branching processes X(1+ε)ϕ(τ̃

k
j ) are realized independently.

Using this new representation of the process, we have

Jα(t) = E
[
α

∑∞
k=1

∑Nk
j=1|X(1+ε)ϕ(τ̃

k
j )|+1]

= E

[
α

∞∏
k=1

(
E
[
α

|X(1+ε)ϕ(τ̃
k
j )|+1|Nk

])Nk

]

= E

[
α

∞∏
k=1

(∫
Rd

Jα
(
t ′
)
ρ−1
k ϕ

(
t� t ′

)
dμk

(
t ′
))Nk

]

= α

∞∏
k=1

exp
{
(1 + ε)

∫
Rd

Jα
(
t ′
)
ϕ

(
t� t ′

)
dμk

(
t ′
) − (1 + ε)ρk

}

= αexp
{
(1 + ε)

∫
Rd

(
Jα

(
t ′
) − 1

)
ϕ

(
t� t ′

)
dμ

(
t ′
)}

�

The second and fourth lines use the monotone convergence theorem. The fourth line
also uses the fact that E[wPoisson(λ)] = eλ(w−1) (e.g. Bollobás, Janson, and Riordan (2007,
proof of Theorem 12.5)). The last line equals

αexp
{
F

(
Jα(t)− 1

)}
� (SA.3.19)

as desired.
Next, we show that Jα(·) is the minimal solution. Let Λ denote the functional f �→

αexp{F(f − 1)}. Following the argument in the proof of Theorem 2.1 in Turova (2012),

Jα = lim
k→∞

Λk(1) ≡ lim
k→∞

(Λ ◦ · · · ◦Λ)︸ ︷︷ ︸
k times

(1)�

Suppose, to obtain a contradiction, that there exists a solution f to (SA.3.17) such that
1 ≤ f < Jα for some α ≥ 1. Since Λ is monotone,

Λk(1) ≤Λk(f ) ≤ f < Jα = lim
k→∞

Λk(1)�

Letting k → ∞ on the left-hand side, we obtain a contradiction. Therefore, Jα is the min-
imal solution.

Lemma SA.3.5. Let α ≥ 1. If there exists a bounded function h : Rd → [1�∞) such that

h≥ αexp
{
F(h− 1)

}
�

then there exists a function g : Rd → R satisfying 1 ≤ g(t) ≤ h(t) for all t ∈ Rd that solves
(SA.3.17).

Proof. We follow the proofs of Theorem 2.1 and Lemma 2.4 in Turova (2012). Let Λ

denote the functional f �→ αexp{F(f − 1)}. Since Λ is monotonic and Λh ≤ h by the
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assumption of this lemma, h ≥ Λh ≥ Λ2h ≥ · · · . Since h ≥ 1, (Λh)(t) = αexp{(F(h −
1))(t)} ≥ α ≥ 1, which implies Λkh≥ 1. Hence the limit

h≥ g ≡ lim
k→∞

Λkh≥ 1�

exists. It remains to show that g is a solution to (SA.3.17). We have

Λg = αexp
{
F(g − 1)

} = αexp
{

lim
k→∞

F
(
Λkh− 1

)} = lim
k→∞

Λ
(
Λkh

) = g�

where the second equality uses monotone convergence and the third uses the continu-
ous mapping theorem.

SA.3.3 Main results

The next lemmas provide exponential tail bounds on the size of and number of links in
an arbitrary component in Γ .

Lemma SA.3.6. Let β = ‖λ‖m�k, the latter defined in Assumption SA.3.1. Let C ∈ C∗(τ�ζ).
Under Assumptions SA.3.1 and SA.3.2, there exists c > 0 such that for any ε > 0 and n

sufficiently large,

P
(|C| >R

) ≤ c
(
(1 + ε)β

)R
�

Proof. Let Ci be the element of C∗(τ�ζ) containing agent i. Choose ε′ > 0 such that
ε′ < ε and (1 + ε′)β < 1. Such an ε′ exists by Assumption SA.3.1, which ensures β< 1. By
Lemma SA.3.1, for n sufficiently large,

P
(|Ci|>R

) ≤ P
(∣∣X(1+ε′)ϕ(τi)

∣∣ >R
)

By Markov’s inequality, for α = ((1 + ε′)β)−1,

P
(∣∣X(1+ε)ϕ(τi)

∣∣ >R
) ≤ α−R sup

t
Jα(t)�

where Jα(t) is defined in (SA.3.9). The right-hand side is bounded above by

c
((

1 + ε′)β)R
for some positive constant c by Lemma SA.3.3, since α ≥ 1. This, in turn, is bounded
above by c((1 + ε)β)R by definition of ε′.

Lemma SA.3.7. Let β = ‖λ‖m�k, the latter defined in Assumption SA.3.1. Let C ∈ C∗(τ�ζ).
Under Assumptions SA.3.1 and SA.3.2, there exists c > 0 such that for any ε > 0 and n

sufficiently large,

P
(

0�5
∑
i�j∈C

Γij > R

)
≤ c

(
(1 + ε)β

)R
�
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Proof. Our strategy is to first construct a tree graph coupled to Γ that has at least the
same number of links. Then we use the fact that the number of links in a tree is at most
the number of nodes to reduce the problem to bounding the size of the tree graph. For
this, we can use branching processes as in Lemma SA.3.6.

We use the breadth-first search in step 1 of the proof of Lemma SA.3.1 to construct
a tree graph T . Let i be an arbitrary node in C. As in that proof, at each time period
r = 0�1� � � � we maintain the set of removed agents Rr , active agents Ar , and unexplored
agents Ur , and we think of Ar is a queue. The process evolves as follows:

• At time r = 0, initialize A0 = {i}, U0 = Nn\{i}, and R0 = ∅. Let T be the network con-
sisting of the singleton node i.

• At time r = 1, update A0 to A1 by dequeueing i and enqueueing {j ∈ Nn : Γij = 1} in
arbitrary order. Update U1 = U0\A1 and R1 = {i}. Add the enqueued set of nodes to
T , and link i to each node in this set.

• At time r > 1, take the first agent in the queue Ar−1, say j. Update Ar−1 to Ar by
dequeueing j and enqueueing {k ∈ Nn : Γjk = 1�k ∈ Ur−1} in arbitrary order. Update
Ur = Ur−1\Ar and Rr = Rr−1 ∪ {j}. Add the enqueued set of nodes to T , and link i to
each node in this set.

Here is the key modification. Let N ∗
j = {k ∈ Nn : Γjk = 1�k /∈ Ur−1}, the set of j’s

neighbors that were previously explored. In the original breadth-first search, these
neighbors were ignored. Here, we instead use them to generate |N ∗

j | new nodes in T
by independently drawing their types from the conditional distribution of τ1 given
Γ1j = 1 and τj . Add these new nodes to T , and link j to each node in this set. Note
that we do not add these artificially generated nodes to the unexplored set, so they
are never revisited in the search, and hence will always remain leaf nodes in T .

The purpose of the key modification is to ensure that each node in T that is not
artificially generated (i.e., is also in C) has the same degree as in C, and furthermore, the
distribution of j’s neighbors’ types is the same in C and T conditional on τj . Therefore,

0�5
∑
i�j

Γij ≤ 0�5
∑
i�j

Tij ≤ |T |� (SA.3.20)

since the number of links in a tree equals the number of nodes minus one.
Following the proof of Lemma SA.3.1, |T | is stochastically dominated by

|X(1+ε)φ(τi)|. As established in the proof of Lemma SA.3.6, there exists c > 0 such that
for any ε > 0 and n sufficiently large,

P
(|T |>R

) ≤ c
(
(1 + ε)β

)R
� (SA.3.21)

Then the result follows from (SA.3.20) and (SA.3.21).

SA.4. Network formation games

This section applies the ideas in Section 2 to strategic network formation. We discuss an
application of the algorithm to compute previously intractable bounds on the identified
set using moment inequalities in Sheng (2016).
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Let Nn = {1� � � � � n} be a set of agents. Endow each agent i ∈ Nn with a type Ti ∈ Rdt ,
distributed i.i.d. across agents, and endow each agent tuple (i� j) with a random utility
shock ζij ∈ Rdζ , i.i.d. across tuples. Note that ζij �= ζji, and the two are independent. Let
T = (Ti)

n
i=1 be the type profile and ζ the n×n matrix with ijth entry ζij for i �= j and zeros

on the diagonal.
This section considers undirected network formation, while Section SA.5 studies the

directed case. Because we are modeling network formation, we need to specify agent
preferences over networks. Let Ui(A�T�ζ) be the payoff i enjoys from A. Let A−ij be the
adjacency matrix with ijth entry removed and (��A−ij) the matrix A with the ijth entry
replaced with the value �. Define Vij(A�T�ζ) = Ui((1�A−ij)�T�ζ) − Ui((0�A−ij)�T�ζ),
which is i’s marginal utility from adding a link with agent j. It is often more convenient to
specify the model in terms of marginal utilities, as we will do next (Boucher and Mourifié
(2017), Graham (2016), Leung (2019), Menzel (2017), Sheng (2016)). We assume

Vij(A�T�ζ) = Vn
(
Sij(A�T)�Ti�Tj� ζij

)
�

where Sij(A�T) = S(A−ij� Ti�Tj�T−ij) for some Rds -valued function S(·), and T−ij is the
type profile T with entries Ti, Tj omitted. Hence, strategic interactions enter marginal
utilities through the vector of statistics Sij(A�T). Note that, as with gn(·) in Section 2,
Vn(·) may vary with the network size n, which will be important for network sparsity (see
Remark 4).

Two standard solution concepts used in the literature are pairwise stability with
transferable and nontransferable utility (Jackson (2010)). We next consider the former
and defer the latter to Section SA.4.4. Define the joint surplus function

V ∗
ij (A�T�ζ) ≡ V ∗

n

(
S∗
ij(A�T)�Ti�Tj� ζij� ζji

) ≡ Vij(A�T�ζ)+ Vji(A�T�ζ)�

where S∗
ij(A�T) = (Sij(A�T)� Sji(A�T)). A network A is pairwise stable if, for all i� j ∈ Nn

with i �= j,

Aij = 1
{
V ∗
ij (A�T�ζ) > 0

}
� (SA.4.1)

The idea is that, even if i’s marginal utility from linking with j is negative, if j’s marginal
utility is positive and utility can be freely transferred between the agents, then j can com-
pensate i for the loss of utility, so the link will form. Let ETU(T�ζ) be the set of pairwise
stable networks under transferable utility.

Example SA.4.1. Suppose A represents a friendship network, and let Zi be a subvector
of Ti representing race. Let

Ui(A�T�ζ) = (si + γdi)
σ +

∑
j

Aij

(
wn(Ti�Tj)

′θ+ ζij
)
�

where si = ∑
j Aij1{Zi = Zj} and di = ∑

j Aij1{Zi �= Zj} are respectively the number of
same- and different-race friends. The first term captures returns to popularity. If σ < 1,
then we have diminishing returns. If γ < 1, then individuals prefer friends of the same



18 Michael P. Leung Supplementary Material

race. This term is motivated Currarini, Jackson, and Pin (2009). The second term cap-
tures costs/benefits of direct connections.

Marginal utilities are given by

Vij(A�T�ζ) = (
si�−j + γdi�−j + 1{Zi = Zj} + γ1{Zi �= Zj}

)σ
− (si�−j + γdi�−j)

σ +wn(Ti�Tj)
′θ+ ζij�

where si�−j = ∑
k�=j Aik1{Zi = Zk} is the number of same-race friends with j excluded,

and di�−j = ∑
k�=j Aik1{Zi �=Zk}. In this example, Sij(A�T) = (si�−j� di�−j).

Example SA.4.2. Dyadic regression models are commonly used in practice to study net-
work formation. These specify a linear model of the joint surplus with no strategic inter-
actions:

Aij = 1
{
wn(Ti�Tj)

′β+ νij > 0
}
� (SA.4.2)

where wn(·) can capture homophily in types, for example, 1{Ti = Tj}, and νij corre-
sponds to ζij + ζji. For example, Fafchamps and Gubert (2007) study the formation of
risk-sharing networks between households in the rural Philippines and find evidence of
geographic homophily.

Model (SA.4.1) may be viewed as a nonlinear generalization of dyadic regression that
allows the latent index to be a function of network-dependent “regressors” S∗

ij(A�T). For
example, consider the specification

V ∗
ij (A�T�ζ) =wn(Ti�Tj)

′θ1 + θ2 max
k

AikAjk + νij�

In this model, S∗
ij(A�T) = maxkAikAjk captures a structural taste for transitivity (Gra-

ham (2016)). In Fafchamps and Gubert’s setting, risk-sharing relationships between
(i�k) and (j�k) may promote link formation between (i� j), since k ensures i against
defaults by j and vice versa. This provides a strategic foundation for the well-known
stylized fact that most real-world social networks exhibit unusual degrees of clustering
(Jackson (2010)).

In the previous examples, Sij(A�T) only depends on its arguments through the net-
work neighbors of i and j. We next impose this restriction more generally. Recall that
N (i) is the set of i’s neighbors in A, and let N (i� j) = (N (i)∪N (j))\{i� j}.

Assumption SA.4.1 (Local interactions). There exists a function S̃(·) such that for all
n ∈N and i� j ∈ Nn,

Sij(A�T) = S̃(AN (i�j)�Ti�Tj�TN (i�j))�

This is analogous to Assumption 1 for graphical games. In Example SA.4.1, clearly
si�−j and di�−j only depends on agents linked to i or j, and likewise with maxkAikAjk,∑

kAik,
∑

kAjk in Example SA.4.2. Assumption SA.4.1 rules out models such as the con-
nections model, where utility depends on agents further than two links away from the
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ego. However, most examples studied in the econometrics literature satisfy this assump-
tion, as the main externalities of interest concern the impact of degree and the presence
of common friends on link formation (Graham (2016), Leung (2019), Mele (2017), Men-
zel (2017), Ridder and Sheng (2017)).

Econometrician’s information We assume the econometrician observes the type profile
T and array of random utility shocks ζ , and given a known payoff function Ui(·) for each
agent, her objective is to compute ETU(T�ζ). Now, in practice, typically Ti = (Xi�εi),
where only εi is unobserved, and Ui(·) and the distributions of εi and ζij are only known
up to some finite-dimensional vector of parameters θ. However, for counterfactual exer-
cises, a candidate value of θ is typically selected, which allows us to draw εi, ζij to obtain
the required inputs T , ζ .

SA.4.1 Strategic neighborhoods

Similar to Algorithm 1, the main idea is to obtain ETU(T�ζ) by computing the set of pair-
wise stable networks on each “strategic neighborhood.” To define these neighborhoods
in the network formation setting, we first need some notation. For any G ⊆ Nn and sym-
metric n×n matrix M , let MG = (Mij : i� j ∈ G), the submatrix of M only containing rows
and columns in G, which are ordered according to their original order in M . Let A(G) be
the set of undirected networks on G ⊆ Nn. Note that ETU(TG�ζG) is the set of pairwise
stable networks in the subgame where the set of players is G rather than Nn.

Define the undirected network D on Nn such that for any i� j ∈ Nn with i �= j,

Dij = 1
{

inf
s
V ∗
n (s�Ti�Tj� ζij� ζji) ≤ 0 ∩ sup

s
V ∗
n (s�Ti�Tj� ζij� ζji) > 0

}
� (SA.4.3)

To interpret this, note that if infs V ∗
n (s�Ti�Tj� ζij� ζji) > 0 (sups V

∗
n (s�Ti�Tj� ζij� ζji) ≤ 0),

then agents i and j are (not) linked in any pairwise stable network, since (not) forming
a link is optimal regardless of the state of the ambient network. In either case, Dij = 0, in
which case we say that the Aij is a robust potential link; otherwise, it is nonrobust.

Let C(T�ζ)⊆ Nn be the set of components of D. For any G ⊆ Nn, define

S(G) =G∪
{
k ∈ Nn : max

j∈G
inf
s
V ∗
n (s�Tj�Tk� ζjk� ζkj) > 0

}
�

This adds to G all agents k connected to G through a robust link.

Definition SA.4.1. S(C) is a strategic neighborhood if C ∈ C(T�ζ).

Example SA.4.3. In Figure SA.1, pairs of agents connected by thick lines have robust
links, those connected by thin lines have nonrobust potential links, and unlinked pairs
have robustly absent links. Then D has two components, which are the “islands” that
result from deleting all thick lines: {1�2�3} and {4� � � � �8}. To obtain the strategic neigh-
borhoods, we add to each component agents connected through thick lines, resulting in
two such neighborhoods: {1� � � � �4} and {3� � � � �8}.
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Figure SA.1. Thick lines denote robust links, thin lines denote nonrobust potential links, and
unlinked pairs have robustly absent links.

Strategic neighborhoods have the following property, which is analogous to (2.4):

AS(C) ∈ ETU(TS(C)� ζS(C)) ∀A ∈ ETU(T�ζ)� (SA.4.4)

That is, if we take any pairwise stable network A and remove all other agents from the
game except members of S(C), then the subnetwork of A on S(C) is still pairwise sta-
ble. A formal proof is given in Lemma SA.4.2. For intuition, consider Figure SA.1. Because
the potential link between agents 7 and 8 is nonrobust, its pairwise stability depends on
links formed by these agents, for example, A48. The same story holds for this potential
link, which depends on A34. However, the latter is robust and therefore pairwise sta-
ble regardless of the state of, say, A13. Hence, if the subnetwork on {3� � � � �8} is pairwise
stable, it remains so after removing agents 1 and 2 from the game.

SA.4.2 Algorithm

Similar to Algorithm 1, we propose to compute ETU(T�ζ) by exploiting (SA.4.4). We com-
pute the sets of pairwise stable subnetworks on strategic neighborhoods and then ap-
propriately combine these sets. Computation of ETU(TS(C)� ζS(C)) for each C ∈ C(T�ζ)
will be feasible using an exhaustive search over all possible subnetworks because |S(C)|
grows logarithmically with n under our assumptions. To combine these sets to obtain
ETU(T�ζ), we must account for the fact that strategic neighborhoods are not necessar-
ily disjoint. For example, if i� j ∈ S(C) ∩ S(C ′) for two distinct components C, C ′, then
it is unclear whether their equilibrium potential link ought to be dictated by profiles in
ETU(TS(C)�AS(C)) or ETU(TS(C)�AS(C)). The main observation is that, since C, C ′ must
be disjoint, it follows that the potential link between i and j is robust and, therefore, the
same across all networks in these two sets.

To state the algorithm succinctly, some definitions are required. Recall the definition
of π(k;C) from (2.5). Let

A∗(C�T�ζ)

=
{
A∗ ∈ A

(
S(C)

) : A∗
π(i;C)�π(j;C) = 1 if inf

s
V ∗
n (s�Ti�Tj� ζij� ζji) > 0

and A∗
π(i;C)�π(j;C) = 0 if sup

s
V ∗
n (s�Ti�Tj� ζij� ζji) ≤ 0� ∀i� j ∈ S(C)� i �= j

}
� (SA.4.5)
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This is analogous to Y(S(C)�T) in Remark 1. It is the collection of networks on
A(S(C)) such that, for each network in this set, (i� j)’s potential link is set to 1 (0) if
infs V ∗

n (s�Ti�Tj� ζij� ζji) > 0 (sups V
∗
n (s�Ti�Tj� ζij� ζji) ≤ 0). To compute the set of pairwise

stable networks on S(C), it will be enough to search through this subset of networks
rather than all possible networks.

For G ⊆H ⊆ Nn, let

ETU(TH�ζH)|G = {
A ∈ A(G) : A =A∗

G for some A∗ ∈ ETU (TH�ζH)
}
�

which is the set of subnetworks on G obtained from a network in ETU(TH�AH). Define

B = {
(i� j) : i� j ∈ Nn� {i� j} � C ∀C ∈ C(T�ζ)

}
� (SA.4.6)

This is the set of agent pairs that “bridge” two components. By definition, their potential
links must be robust. Finally, let

×
C∈C(T�ζ)

ETU(TS(C)� ζS(C))

=
{
A∗ ∈ A(Nn) : A∗

C ∈ ETU(TS(C)� ζS(C))|C ∀C ∈ C(T�ζ)�

A∗
ij = 1

{
inf
s
V ∗
n (s�Ti�Tj� ζij� ζji) > 0

}
∀(i� j) ∈ B

}
� (SA.4.7)

This is well-defined because any pair of agents must either be such that both are in dif-
ferent components (and, therefore, in B) or the same component. With these definitions,
we state our proposed procedure in Algorithm SA.1.

Remark SA.4.1 (Explanation of Algorithm SA.1). Line 1 of Algorithm SA.1 computes the
connected components of D. As discussed in Remark 1, this can be done in O(n+L) time
using depth-first search, where L is the number of links in D. Line 2 runs an exhaustive
search of A(S(C)) for each C. Line 3 shows how to assemble the equilibrium sets to
obtain ETU(T�ζ). For example, to obtain an arbitrary pairwise stable network, we take
one pairwise stable subnetwork from ETU(TS(C)� ζS(C))|C for each C and then connect
them by linking between each pair of agents in different components that are robustly
linked.

Remark SA.4.2 (Diagnostic for computational feasibility). In practice, the only compu-
tationally intensive step of the algorithm is exhaustive search over the links of C∗

1 , the
largest component of D. A quick way to assess the feasibility of this step is to compute
the number of links Δ in DC∗

1
. The runtime of exhaustive search is then 2Δ, which is

shown to be polynomial in n in the theorem below.

Remark SA.4.3 (Myopic best-response dynamics). When the objective is to obtain a
single (arbitrary) equilibrium, say for the purposes of a simulation study, myopic best-
response dynamics are commonly used. This is a discrete-time process initialized at an
arbitrary starting network, where at each period, each pair of agents myopically reop-
timizes their potential links according to (SA.4.1). Under strategic complements, this
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Algorithm SA.1: Procedure for computing the set of pairwise stable networks.

Input: T , ζ , V ∗
n (·)

Output: ETU(T�ζ)

1 Compute D and then C(T�ζ) using depth-first search of D.
2 Compute each ETU(TS(C)� ζS(C)) using exhaustive search:

for C ∈ C(T�ζ) do
ES(C) ← ∅
for A ∈ A∗(C�T�ζ) do

if Aπ(i;C)�π(j;C) = 1{V ∗
ij (A�T�ζ) > 0} for all i� j ∈ C, i �= j then

ES(C) ← ES(C) ∪ {A}
end

end
ETU(TS(C)� ζS(C)) ← ES(C)

end
3 Combine equilibrium sets:

if ETU(TS(C)� ζS(C)) �= ∅ ∀C ∈ C(T�ζ) then
ETU(T�ζ) ←×C∈C(T�ζ) ETU(TS(C)� ζS(C))

else ETU(T�ζ) ← ∅.

is guaranteed to converge to a pairwise stable network (Milgrom and Roberts (1990)).
Otherwise, convergence holds if the starting network lies along an improving path to an
equilibrium (Jackson and Watts (2002)). Our algorithm suggests a few practical improve-
ments. First, the dynamics can be run separately, in parallel, on each strategic neighbor-
hood. Second, it is faster to initialize the process at an element of A∗(C�T�ζ), which
fixes robust potential links at their optimal states in all equilibria. Then we can ignore
pairs of agents in B in the dynamics, since their potential links are robust and already
set to their optimal values.

Theorem SA.4.1. Suppose evaluating Dij and V ∗
ij (A�T�ζ) have the same complexity for

any i, j. Under Assumptions SA.4.1 and SA.4.2, the latter given in the next subsection, Al-
gorithm SA.1 computes ETU(T�ζ) in Op(n

2 + n1+q) evaluations of the joint surplus func-
tion for q > log 2/ log‖λ‖−1

m�k, where ‖λ‖m�k is defined in Assumption SA.4.2.

Proof. See Section SA.4.6.

The complexity here differs slightly from that of Algorithm 1. This is because in the
latter procedure, computing D only requires computing Rc

i for each i, whereas here,
computing D requires calculating Dij for each pair i, j, which therefore takes O(n2) steps.
The assumption regarding the complexity of evaluating Dij and V ∗

ij (A�T�ζ) plays the
same role as the assumption discussed in Remark 5.
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SA.4.3 Assumptions

We state conditions required for Theorem SA.4.1 analogous to Assumptions 2 and 3 in
Section 2.3.

Assumption SA.4.2. Assumptions 2 and 3 hold with D given by (SA.4.3) and τi replaced
with Ti for all i.

Leung (2019) Section 3.3 details how Assumption 2 in this setting is analogous to
(2.8) and standard weak dependence conditions widely used in time series and spatial
statistics. The remainder of this subsection discusses the economic interpretation of the
condition.

Recall the definition of Dij in (SA.4.3), and observe that

nE[Dij] = n
(

P
(

sup
s

V ∗
n (s�Ti�Tj� ζij� ζji) > 0

)
− P

(
inf
s
V ∗
n (s�Ti�Tj� ζij� ζji) > 0

))
�

This measures the strength of strategic interactions because it corresponds to the
partial-equilibrium change in (i� j)’s linking probability from changing their network
dependent statistics S∗

ij(A�T) from their minimizing to their maximizing value. This is

analogous to E[Rc
j ] in Section 2.3.4 The next example shows that the analog of Assump-

tion 2 in the network formation setting imposes a restriction on the strength of interac-
tions.

Example SA.4.4. Consider the specification of V ∗
ij (A�T�ζ) in Example SA.4.2. Here,

Dij = 1
{−θ2 <wn(Ti�Tj)

′θ1 + νij ≤ 0
}
�

Suppose Ti ∈ R2 is continuously distributed, and wn(Ti�Tj)
′θ1 = θ1 + ρn(Ti�Tj),

where ρn(Ti�Tj) equals −∞ if r−1
n ‖Ti − Tj‖ ≤ 1 and zero otherwise for rn = (κ/n)2. Here,

we interpret Ti as geographic location, so the model imposes geographic homophily in
the sense that agents only link with those for whom their scaled distance is at most 1
apart. Then

Dij = 1{−θ2 < θ1 + νij ≤ 0}1
{
r−1
n ‖Ti − Tj‖ ≤ 1

}
� (SA.4.8)

If νij ⊥⊥ Ti�Tj , then some algebra shows that

‖λ‖m�k < 1 if and only if γ <
1
κπ

� (SA.4.9)

where π is the universal constant and γ = P(−θ2 < θ1 + νij ≤ 0) (Leung (2019)). Observe
that

γ = P(θ1 + θ2 + νij > 0)− P(θ1 + νij > 0)�

which is the partial-equilibrium marginal effect of having a common friend on (i� j)’s
linking probability, given that the scaled distance between the types of i and j does not

4The scaling by n ensures that nE[Dij] has a nondegenerate limit, since sparsity implies E[Dij] =O(n−1).
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exceed 1. Furthermore, κπ is the limiting expected number of agents within radius 1 of
the ego, which is an upper bound on the asymptotic expected degree. Hence, γ measures
the strength of strategic interactions, and (SA.4.9) is completely analogous to (2.13).5

Remark SA.4.4. For the analog of Assumption 3 in the network formation setting, note
that if ϕ(t� t ′)= 0 everywhere, then this corresponds to a model with no strategic interac-
tions. This is because if V ∗

n (·) does not vary in S∗
ij(A�T), then Dij is necessarily zero. For

models with strategic interactions, Assumption 3 imposes a mild nondegeneracy condi-
tion on the network D; see the discussion following the statement of Assumption 3.

SA.4.4 Nontransferable utility

Consider the model in Section SA.4, and recall that Vn(Sij(A�T)�Ti�Tj� ζij) is agent i’s
marginal utility of adding a link with j. We next consider the model in which utility is
nontransferable. We say A is pairwise stable if for all i� j ∈ Nn with i �= j,

Aij = 1
{
Vn(Sij�Ti�Tj� ζij) > 0 ∩ Vn(Sji�Tj�Ti� ζji) > 0

}
(SA.4.10)

(Jackson (2010)). This states that a link forms between i and j if and only if both parties
prefer it.

Let ENT(T�ζ) be the set of pairwise stable networks with nontransferable utility. We
can employ Algorithm SA.1 to compute this set by appropriately redefining D and S(C).
Toward this end, we first define the undirected network M on Nn such that for all i� j ∈ Nn

with i �= j,

Mij = 1
{

sup
s

Vn(s�Ti�Tj� ζij) > 0 ∩ sup
s

Vn(s�Tj�Ti� ζji) > 0
}
� (SA.4.11)

If Mij = 0, then either i or j prefers not to form the link under any pairwise stable net-
work. In this case, we say that Aij is robustly absent. Let D be the undirected network on
Nn such that for all i� j ∈Nn with i �= j,

Dij = max{D̃ij� D̃ji}Mij� where

D̃ij = 1
{

inf
s
Vn(s�Ti�Tj� ζij)≤ 0

}
�

(SA.4.12)

To understand this definition, note that if D̃ij = 0, then agent i prefers to form a link with
j in any pairwise stable network. If in addition D̃ji = 0, then we say that (i� j) form a ro-
bust link. If D̃ijMij = 1, then whether i prefers to link with j may depend on links formed
by other agents in the network. Hence if Dij = 1, then we say that Aij is a nonrobust
potential link.

5Our only motivation for using this specification of ρn(Ti�Tj) is that we can write Dij in multiplica-
tively separable form (SA.4.8), which results in (SA.4.9). The latter allows us to draw a clear analogy with
the more well-known condition (2.13). If we instead consider more empirically realistic specifications like
ρn(Ti�Tj) = r−1

n ‖Ti − Tj‖, it is still possible to derive closed-form expressions for ‖λ‖m�k in certain cases
(see, e.g., Leung (2019, Appendix A)), but the expression does not decompose as nicely as (SA.4.9) and is
therefore less immediately interpretable.
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Let C(T�ζ) be the set of components of D, and

S(G) =G∪
{
k ∈Nn : max

j∈G
(1 − D̃jk)(1 − D̃kj) = 1

}
�

This adds to G all agents k connected to G through a robust link. Then for C ∈ C(T�ζ),
S(C) is the strategic neighborhood associated with C. Next, define the set

A∗(C�T�ζ) = {
A∗ ∈ A

(
S(C)

) : A∗
π(i;C)�π(j;C) = 1 if (1 − D̃ij)(1 − D̃ji) = 1

and A∗
π(i;C)�π(j;C) = 0 if Mij = 0� ∀i� j ∈ S(C)� i �= j

}
�

This is the analog of (SA.4.5). We link (unlink) i and j in every network in this set if both
agents prefer (not) to have the link regardless of the state of the ambient network. We
use this notation in line 2 of the algorithm to fix the potential links of these agent pairs
and only search over nonrobust potential links.

Using these new definitions, Algorithm SA.1 computes ENT(T�ζ) in the case of
non-transferable utility. We omit the proof as it is essentially the same as the proof
of Lemma SA.4.3, which considers the transferable-utility case. If Assumptions SA.4.1
and SA.4.2 hold for D given by (SA.4.12), then minor modifications of the proof of The-
orem SA.4.1 establish that the algorithm outputs the equilibrium set in Op(n

2 + n1+q)

evaluations of the marginal utility function. We conclude this subsection with an ex-
ample illustrating the interpretation of Assumption 2 as a restriction on the strength of
strategic interactions in the nontransferable utility setting.

Example SA.4.5. A bivariate logit analog of the dyadic regression model (SA.4.2) is

Aij = 1
{
wn(Ti�Tj)

′β+ ζij > 0
}

1
{
wn(Tj�Ti)

′β+ ζji > 0
}
�

Model (SA.4.10) is a nonlinear generalization of the bivariate logit that allows the latent
indices to be functions of network-dependent “regressors” Sij(A�T). For example, con-
sider the specification of the marginal utility function

Vn
(
Sij(A�T)�Ti�Tj� ζij

) = wn(Ti�Tj)
′θ1 + θ2 max

k
AikAjk + ζij�

Here, Sij(A�T) = maxkAikAjk captures a structural taste for transitivity, as discussed in
Example SA.4.2.

As in Example SA.4.4, let us consider the geographic homophily model where Ti ∈R2

is continuously distributed, and wn(Ti�Tj)
′θ1 = θ1 + ρn(Ti�Tj), where ρn(Ti�Tj) equals

−∞ if r−1
n ‖Ti − Tj‖ ≤ 1 and zero otherwise for rn = (κ/n)2. Then

Dij = 1
{{−θ2 < θ1 + ζij ≤ 0 ∩ θ1 + θ2 + ζji > 0}

∪ {−θ2 < θ1 + ζji ≤ 0 ∩ θ1 + θ2 + ζij > 0}}1
{
r−1
n ‖Ti − Tj‖ ≤ 1

}
� (SA.4.13)

If (ζij� ζji) ⊥⊥ (Ti�Tj), then

‖λ‖m�k < 1 if and only if γ <
1
κπ

�



26 Michael P. Leung Supplementary Material

where π is the universal constant and γ is the expectation of the first indicator on
the right-hand side of (SA.4.13). To interpret this inequality, notice that γ̃ ≡ P(−θ2 <

θ1 + ζij ≤ 0) is the partial-equilibrium marginal effect of having a common friend on
i’s propensity to link with j. Then if ζij ⊥⊥ ζji, we have γ ≥ γ̃2, so γ < (κπ)−1 implies
γ̃ < (κπ)−1/2, which is analogous to (2.13).

SA.4.5 Application to Sheng (2016)

Sheng (2016) studied estimation of network formation games under transferable and
nontransferable utility. She assumes Ti = (Xi�εi) with only Xi observed, and U(·) and
the distribution of ζij are known up to a finite-dimensional vector of parameters θ. Her
paper provides tractable moment inequalities that conservatively bound the identified
set of parameters. We discuss how our algorithm can be used to compute the sharp
analogs of her bounds under additional assumptions.6

The moment inequalities are based on subnetwork moments P(AG = aG | XG),
where G ⊆ Nn, XG = (Xi)i∈G, and aG is a fixed network on G. For the case of trans-
ferable utility, Sheng showed that subnetwork moments are upper and lower bounded
as follows:

P
(
aG ∈ ETU(T�ζ)|G ∩ ∣∣ETU(T�ζ)|G

∣∣ = 1 | XG

)
≤ P(AG = aG | XG) ≤ P

(
aG ∈ ETU(T�ζ)|G | XG

)
� (SA.4.14)

These bounds are sharp under unrestricted equilibrium selection.7 To compute the
right-hand side, we have to simulate ETU(T�ζ)|G for many draws of ζ . Checking whether
aG is an element of this set requires us to find an ambient network a−G such that
(aG�a−G) is pairwise stable. Computing the lower bound is even more difficult, since for
each draw, we also have to verify that (aG�a−G) is the unique equilibrium. Thus, for n

large, the bounds are generally intractable because of the need to compute ETU(T�ζ)|G.
Sheng proposed new bounds that are computationally feasible but conservative relative
to (SA.4.14).

We next show that if the model satisfies Assumption SA.4.2, then Algorithm SA.1 can
be applied to feasibly simulate the sharp bounds (SA.4.14). First, we need some defini-
tions. Fix T , ζ , and the realization of D under these primitives. For any i ∈ Nn, let Ci be
i’s component in D. Define G∗ = ⋃

i∈G S(Ci), the union of the strategic neighborhoods
of agents in G.

The key observation is that, by (SA.4.4), aG ∈ ETU(T�ζ)|G, is equivalent to aG ∈
ETU(TG∗�ζG∗)|G. The latter set is analogous to ETU(T�ζ)|G, except G∗ is the set of play-
ers, rather than Nn. In other words, to simulate the upper bound, for each simulation
draw, we only need to search through pairwise stable networks on the much smaller
subset G∗, rather than Nn to find a network aG∗\G on G∗\G such that (aG�aG∗\G) is
pairwise stable (and for the lower bound, uniquely so). This is feasible because under
our assumptions, strategic neighborhood sizes have exponential tails, so G∗ typically
has manageable size.

6I thank a referee for suggesting this application.
7For the nontransferable case, replace ETU(T�ζ) with ENT(T�ζ) in every expression in this subsection.
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More precisely, we can simulate bounds in (SA.4.14) as follows. Given G, we sim-
ulate ζ and compute G∗ using line 1 of Algorithm SA.1. Then we use line 2 of the
algorithm to compute ETU(TG∗�ζG∗), which is feasible under our assumptions by
Theorem SA.4.1. For the upper bound, we keep simulation draws such that aG ∈
ETU(TG∗�ζG∗)|G. For the lower bound, we keep draws satisfying this and additionally
satisfying |ETU(TG∗�ζG∗)|G| = 1. These sets of draws can be used to construct estimates
for the bounds in (SA.4.14) that are consistent as the number of simulation draws di-
verge.

Regardless of whether Assumption SA.4.2 holds, computational feasibility relies on
the size of the largest strategic neighborhood that comprises G∗ being sufficiently small,
since we are exhaustively searching all networks on S(Ci) for each i ∈G to find the equi-
librium set. Our assumptions guarantee that the largest neighborhood is typically small,
but in practice, one can diagnose feasibility by computing the size of this neighborhood
first, which is a byproduct of line 1 of Algorithm SA.1; see Remark SA.4.2.

SA.4.6 Proof of main result

Proof of Theorem SA.4.1. Line 1. Given T , ζ , computing D takes O(n2) evaluations of
the joint surplus function, since we need to compute Dij for each pair of agents. As dis-
cussed in Remark SA.4.1, computing C(T�ζ) takes O(n+L) time, where L is the number
of links in D. The expected number of links is 0�5E[∑i

∑
j Dij] ≤ n2E[Dij], which is O(n)

by Assumption SA.4.2 (specifically, the analog of Assumption 2). Hence, L = Op(n), so
line 1 of the algorithm requires Op(n

2) evaluations.
Line 2. For each strategic neighborhood S(C), the algorithm evaluates whether each

network in A∗(S(C)�T�ζ) is pairwise stable. The size of this set is 20�5
∑

i�j∈C Dij . For each
candidate network in this set, we need to verify the pairwise stability conditions by eval-
uating the joint surplus for each pair of agents (i� j) in C for which Dij = 1. Hence, we re-

quire at most (0�5
∑

i�j∈C Dij)2
0�5

∑
i�j∈C Dij evaluations. These computations are repeated

for every strategic neighborhood, resulting in a total of

∑
C∈C(T�ζ)

(
0�5

∑
i�j∈C

Dij

)
20�5

∑
k�l∈C Dkl ≤ 0�5

∑
i�j

Dij max
C∈C(T�ζ)

20�5
∑

k�l∈C Dkl (SA.4.15)

evaluations. The inequality follows because 0�5
∑

C∈C(T�ζ)
∑

i�j∈C Dij is the total num-
ber of links in D. As shown above,

∑
i�j Dij = Op(n). By Lemma SA.4.1, the max term

is Op(n
q). Therefore, (SA.4.15) = Op(n

1+q).
Line 3. Under Assumption SA.4.1, we can apply Lemma SA.4.3, which proves that the

algorithm has the desired output.

Lemma SA.4.1. Under Assumption SA.4.2,

max
C∈C(T�ζ)

20�5
∑

k�l∈C Dkl = Op
(
nq

)
�
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Proof. Let β= ‖λ‖m�k. By Assumption 2, there exists ε > 0 such that (1+ε)β < 1. Using
Lemma SA.3.7, for any such ε and m> 0,

P
(

max
C∈C(T�A)

20�5
∑

i�j∈C Dij > mnq
)

≤ cn1−q(log 2)−1 log((1+ε)β)−1
m−(log 2)−1 log((1+ε)β)−1

for some c > 0, as in the proof of Lemma SA.2.1. As in that proof, this is o(1) as m�n → ∞
for q satisfying (SA.2.2).

Lemma SA.4.2. Consider the model of Section SA.4 under the solution concept of pairwise
stability with transferable utility. Under Assumption SA.4.1, for any C ∈ C(T�ζ),

ETU(TS(C)� ζS(C))= ETU(T�ζ)|S(C)�

Proof. We first prove that

ETU(TS(C)� ζS(C))⊆ ETU(T�ζ)|S(C)�

Let A ∈ ETU(TS(C)� ζS(C)) and A′ ∈ ETU(T�ζ). Construct a network A∗ by defining

A∗
k� =

{
Ak� if k�� ∈ S(C)�

A′
k� otherwise.

That is, we take A′ and replace the subnetwork on S(C) with AS(C). It suffices to show
A∗ ∈ ETU(T�ζ). For this purpose, fix arbitrary agents i� j ∈ S(C) and k ∈ Nn\S(C).

We show that A∗
ij is a “best response” for (i� j) to A∗ in the sense that (SA.4.1) holds.

There are two cases to consider. First suppose {i� j} is not a subset of C. Then by defini-
tion of S(C), we have infs V ∗

n (s�Ti�Tj� ζij� ζji) > 0, which means (i� j) form a link in any
pairwise stable network (robust link). The second case to consider is i� j ∈ C. Then since
k /∈ S(C), we must have sups V

∗
n (s�Tk�T�� ζk�� ζ�k) ≤ 0 for any � ∈ {i� j} by definition of

S(C). That is, k is not linked with i or j in any pairwise stable network (robustly absent
links). Then by Assumption SA.4.1, the joint surplus of (i� j) is not a function of k in the
sense that removing k from the game does not affect the value of their joint surplus.
Since k is any arbitrary agent not in S(C), given that A ∈ ETU (TS(C)� ζS(C)), it follows
that A∗

ij is a “best response” to A∗, as desired.
Next, we show that, for any pair of agents {k��} that is not a subset of S(C), A∗

k� is
a “best response” to A∗ in the sense that (SA.4.1) holds. Note that, necessarily, {k��} ⊆
Nn\C. Suppose, for i, j previously defined above, that i� j ∈ S(Nn\C). Then it must be
the case that (i� j) have a robust link. Therefore, A′

ij = Aij , so (i� j)’s potential link is the
same in A′ and A∗. On the other hand, suppose {i� j} is not a subset of S(Nn\C). Since
k�� ⊆ Nn\C, we must have sups V

∗
n (s�Tp�Tq� ζpq� ζqp) ≤ 0 for all p ∈ {i� j} and q ∈ {k��},

as argued in the previous paragraph. Then by Assumption 1, the joint surplus of (k� �) is
not a function of {i� j} in the sense that removing {i� j} from the game does not change
the value of their joint surplus.

We have therefore established that (1) the only potential links of the networks A′
and A∗ that may differ are those of agents i� j � S(Nn\C), and (2) the joint surplus of
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any agent pair {k��} ⊆ Nn\C is not function of the links and types of such agents i, j
under A∗. Then since A′ ∈ ETU(T�ζ), it follows that A∗

k� is a “best response” to A∗ for any
k�� ∈ Nn\C in the sense that (SA.4.1) holds, in particular for k�� � S(C), which proves
the desired claim.

Step 2. We prove that

ETU(TS(C)� ζS(C)) ⊇ ETU(T�ζ)|S(C)�

Let A ∈ ETU(T�ζ)|S(C). By definition, there exists A′ ∈ ETU(T�ζ) such that A = A′
S(C). Fix

arbitrary agents i� j ∈ S(C) and k ∈ Nn\S(C). There are three cases to consider. First,
suppose {i� j} � C. Then by definition of S(C), we have that infs V ∗

n (s�Ti�Tj� ζij� ζji) > 0,
so Aij = 1 is pairwise stable regardless of how other links are formed. Second suppose
{i� j} ⊆ C. Since k /∈ S(C), then as argued in step 1, Ak� = 0 for any � ∈ {i� j}, so (i� j)’s
joint surplus is not a function of j’s links in A′. Since i, j are arbitrary, it follows that, in
the game where the set of agents is restricted to S(C), Aij is a “best response” to AS(C)

in the sense that (SA.4.1) holds in this subgame. Hence, A ∈ ETU(TS(C)� ζS(C)).

Lemma SA.4.3. Under Assumption SA.4.1,

×
C∈C(T�ζ)

ETU(TS(C)� ζS(C))|C = ETU(T�ζ)�

Proof. Step 1. Let A∗ ∈×C∈C(T�ζ) ETU(TS(C). This set is well-defined because for any
pair of agents (i� j), either i� j ∈ C for some C ∈ C(T�ζ), or (i� j) ∈ B. Consider any i� j ∈
Nn. If (i� j) ∈ B, then by definition of robustness, A∗

ij is a “best response” for (i� j) to A∗
in the sense that (SA.4.1) holds.

On the other hand, suppose i� j ∈ C for some C ∈ C(T�ζ). We first prove that

A∗
S(C) ∈ ETU(TS(C)� ζS(C))� (SA.4.16)

By construction, (1) there exists A ∈ ETU(TS(C)� ζS(C)) such that the subnetwork of A∗
S(C)

on C equals AC , and (2) Ak� =A∗
k� = 1{infs V ∗

n (s�Tk�T�� ζk�� ζ�k) > 0} for any k�� ∈ S(C)

such that {k��} is not a subset of C, since the potential link of any such pair is necessarily
robust. Therefore, A∗

S(C) =A, which proves (SA.4.16).
This establishes that, in the game where the set of players is given by S(C), A∗

ij is a
“best response” for (i� j) to A∗

S(C) in the sense that (SA.4.1) holds. In fact, A∗
ij is a “best

response” to A∗ in the game with all n players. This is because, as argued in the second
paragraph of the proof of Lemma SA.4.2, the joint surplus of (i� j) is not a function of the
links of agents k /∈ S(C) in the sense that removing such agents from the game does not
affect the value of their joint surplus.

We have thus proved that A∗ ∈ ETU(T�ζ). Hence,

×
C∈C(T�ζ)

ETU(TS(C)� ζS(C))|C ⊆ ETU(T�ζ)�

Step 2. We prove the ⊇ direction. Let A∗ ∈ ETU(T�ζ). By definition of robustness,
A∗

ij = 1{infs V ∗
n (s�Ti�Tj� ζij� ζji) > 0} for any i� j ∈ B. Let C ∈ C(T�ζ). Then A∗

S(C) ∈
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ETU(TS(C)� ζS(C)) by Lemma SA.2.2. Hence, A∗
C ∈ ETU(TS(C)� ζS(C))|C , so

A∗ ∈
{
A∗ ∈ A(Nn) : A∗

C ∈ ETU(TS(C)� ζS(C))|C ∀C ∈ C(T�ζ)�

A∗
ij = 1

{
inf
s
V ∗
n (s�Ti�Tj� ζij� ζji) > 0

}
∀(i� j) ∈ B

}
�

as desired.

SA.4.7 Extension of Theorem 1

We next generalize Theorem 1 to allow for strategic network formation. Suppose the
network A either satisfies (SA.4.1) or (SA.4.10). Observe that A is a subnetwork of M ,
whose ijth entry is defined by (SA.4.11) in the nontransferable case and by

Mij = 1
{

sup
s

V ∗
n (s�Ti�Tj� ζij� ζji) > 0

}
in the transferable utility case. Let D∗ be the directed network such that D∗

ij = MijRc
j for

all i� j ∈Nn with i �= j.

Theorem SA.4.2. Suppose evaluating Rc
i and Ui(Si(Y �T�A)�Ti) have the same complex-

ity for any i. Further suppose Assumptions 2 and 3 hold for D replaced with D∗. Then
Algorithm 1 computes ENE(T�A) in Op(n

1+q) steps for q defined in Theorem 1.

Proof. The proof is the same as that of Theorem 1, except we modify the proof for line 2
as follows. Let Ci be the strongly connected component of D containing agent i, that is,
C ∈ C(T�A) and i ∈ C. Let C∗

i be the strongly connected component of D∗ containing i.
Then since D is a subnetwork of D∗, Ci ⊆ C∗

i . Hence,

n max
C∈C(T�A)

2|C| ≤ nmax
i∈Nn

2|C∗
i |�

Apply Lemma SA.2.1 to obtain an Op(n
1+q) bound on the right-hand side.

SA.5. Directed network formation

This section applies the ideas in Section 2 to the Bala and Goyal (2000) model of directed
network formation. Define types Ti and random utility shocks ζij as in Section SA.4. Let
Ui(A�T�ζ) be the payoff i enjoys from the directed network A on Nn. Agents each simul-
taneously choose the alters to which they would like to form directed links. That is, they
unilaterally select the ith row of A, denoted by Ai, keeping in mind that Aii = 0, since
we assume no self-links. Let A−i be the adjacency matrix A with the ith row deleted. We
say that A is Nash stable if

Ui(A�T�ζ) > Ui

(
(ai�A−i)�T�ζ

) ∀ai ∈ {0�1}n−1�8 (SA.5.1)

8By (ai�A−i), we mean the following. Construct ãi ∈ {0�1}n from ai by inserting a zero in the vector after
the (i− 1)th component. Then replace the ith row and column of A with ãi. The result is denoted (ai�A−i).
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This differs from the pairwise stability concepts in two respects. First, there is no mu-
tual consent. An agent i has sole discretion over the state of Aij for any j, since links are
directed. Second, an agent can deviate by simultaneously adding and/or removing any
number of her directed links, whereas pairwise stability only allows an agent to unilat-
erally deviate by removing a single link. Let ENS(T�ζ) be the set of Nash stable networks.

A key difference between this solution concept and pairwise stability is that the ac-
tion space here is {0�1}n−1. This makes computing ENS(T�ζ) more difficult because eval-
uating whether Ai is agent i’s best response to A−i potentially requires computing utili-
ties for all other 2n−1 − 1 alternatives. Equilibrium refinements in the undirected model,
such as pairwise Nash stability, also share this problem, so the algorithm provided below
will be useful for such extensions.

Define Vij(A�T�ζ) = Ui((1�A−ij)�T�ζ)−Ui((0�A−ij)�T�ζ), i’s marginal utility from
adding a link with agent j. As in Section SA.4, we assume

Vij(A�T�ζ) = Vn
(
Sij(A�T)�Ti�Tj� ζij

)
�

where Sij(A�T) = S(A−ij� Ti�Tj�T−ij) for some Rds -valued function S(·), and T−ij is the
type profile T with entries Ti, Tj omitted. Strategic interactions enter marginal utilities
through Sij(T�A).

Example SA.5.1. Consider the payoff function

Ui(A�T�ζ) =
∑
j

Aij

(
wn(Ti�Tj)

′θ1 + ζij + θ2Aji + θ3
∑
k

AikAjk + θ4
∑
k

Aki

)
�

This is essentially a special case of the model studied in Ridder and Sheng (2017). The
first two terms in the payoff function capture the direct benefits of the link Aij for i.
The remaining terms respectively capture reciprocity, a form of clustering (see Exam-
ple SA.4.2), and popularity. Agent i’s marginal utility of adding a link with j is

wn(Ti�Tj)
′θ1 + ζij + θ2Aji + θ3

∑
k

(AikAjk +AikAjk)+ θ4
∑
k

Aki�

Here, Sij(A�T)= (Aji�
∑

k(AikAjk +AikAjk)�
∑

kAki).

The previous example satisfies a more general nonparametric restriction on strategic
interactions that we state next.

Assumption SA.5.1 (Local interactions). Let Nin(i) = {j ∈ Nn : Aji = 1}, Nout(i) = {j ∈
Nn : Aij = 1}, and

N ∗(i) =
( ⋃
j∈Nout(i)

(
Nin(j)∪Nout(j)

)) ∪N in(i)�

For all i ∈ Nn and n ∈ N, there exists Ũi(·) such that

Ui(A�T�ζ) = Ũi(AN ∗(i)�TN ∗(i)� ζN ∗(i))�
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This says that i’s payoffs only depend on the primitives through her in-neighbors
(Nin(i)) and in/out-neighbors of her out-neighbors (Nout(i)). In Example SA.5.1, the
statistic

∑
j Aij(wn(Ti�Tj)

′θ1 + ζij + θ2Aji) is a function of i’s out-neighbors,∑
j Aij

∑
kAki i’s in/out-neighbors, and

∑
j

∑
kAijAikAjk the in/out-neighbors of i’s

out-neighbors. Assumption SA.5.1 implies that the marginal utility function Vn(·) de-
pends on the network only through the in/out-neighbors of i and j, which is analogous
to Assumption SA.4.1.

SA.5.1 Strategic neighborhoods

Similar to the undirected case, the idea for computing ENS(T�ζ) is to compute Nash
stable equilibria in smaller subgames involving only agents in a strategic neighborhood.
We next define these neighborhoods for the directed case. Let D be the directed network
on Nn such that for any i� j ∈ Nn with i �= j,

Dij = 1
{

inf
s
Vn(s�Ti�Tj� ζij) ≤ 0 ∩ sup

s
Vn(s�Ti�Tj� ζij) > 0

}
� (SA.5.2)

This is similar to (SA.4.3) except defined using the marginal utility function rather
than the joint surplus, since directed link formation does not require mutual con-
sent. If Dij = 0, then we say the potential link from i to j is robust. This is because if
infs Vn(s�Ti�Tj� ζij) > 0, then i prefers to link with j in any Nash stable network, what we
call a robust link. If sups Vn(s�Ti�Tj� ζij) ≤ 0, i prefers not to link with j in any equilibrium,
what we call a robustly absent link.

Let D̃ be the undirected network on Nn obtained from D by ignoring the directional-
ity of the links. That is, D̃ij = max{Dij�Dji}. Let C(T�ζ) be the components of D̃. For any
G ⊆ Nn, define

S(G) =G∪
{
k ∈Nn : max

j∈G
max

{
inf
s
Vn(s�Tj�Tk� ζjk)� inf

s
Vn(s�Tk�Tj� ζkj)

}
> 0

}
�

This adds to G all agents k such that, for some j ∈ G, either k is robustly linked to j or
the latter is robustly linked to k (or both). For any C ∈ C(T�ζ), we call S(C) the strategic
neighborhood associated with C.

As proven in Lemma SA.5.2, strategic neighborhoods have the following property,
analogous to (SA.4.4):

AS(C) ∈ ENS(TS(C)� ζS(C)) ∀A ∈ ENS(T�ζ)�

That is, if we take any Nash stable network A and remove all other agents from the game
except members of S(C), then the subnetwork of A on S(C) is still Nash stable.

SA.5.2 Algorithm

As previously stated, an additional complication of Nash compared to pairwise stability
is that to check the optimality of an agent’s set of directed links in a given network, in
principle we would have to compare her payoffs against those under all other 2n−1 − 1
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possible actions. The key observation is that we can substantially reduce the dimen-
sionality of the space of alternative actions by fixing i’s robust potential links and only
considering through those that are nonrobust. Other than this complication, the basic
idea of the algorithm is the same as the undirected case.

We first define the smaller action space it suffices to search over to verify Nash sta-
bility. Let A(G) be the set of directed networks on G, and define

A∗(C�T�ζ)

=
{
A∗ ∈ A

(
S(C)

) : A∗
π(i;C)�π(j;C) = 1 if inf

s
Vn(s�Ti�Tj� ζij) > 0

and A∗
π(i;C)�π(j;C) = 0 if sup

s
Vn(s�Ti�Tj� ζij) ≤ 0� ∀i� j ∈ S(C)� i �= j

}
� (SA.5.3)

where π(k;C) is defined in (2.5) (so A∗
π(i;C)�π(j;C) is simply the entry of A∗ that corre-

sponds to the potential link from i to j). This set is analogous to (SA.4.5). It is the set of
directed networks on S(C), where the potential link from i to j is set to 1 in all networks
if that link is robust and set to 0 if robustly absent. Let

A∗
i (C�T�ζ)= {

a ∈ {0�1}|S(C)| : a= Ai for some A ∈ A∗(C�T�ζ)
}
�

This set collects the ith row of every network in A∗(C�T�ζ), which corresponds to agent
i’s action. We can show that the number of elements in this set is Op(1) under a condition
analogous to Assumption 2. Hence, searching through this set to verify Nash stability is
feasible.

The remaining definitions are needed to show how to assemble Nash stable
networks on strategic neighborhoods. They are entirely analogous to those in
Section SA.4.2. For H ⊆ Nn, note that ENS(TH�ζH) is the set of directed Nash stable net-
works in the game consisting only of players in H. For G⊆ H ⊆ Nn, let

ENS(TH�ζH)|G = {
A ∈ A(G) : A =A∗

G for some A∗ ∈ ENS(TH�ζH)
}
�

which is the set of subnetworks on G obtained from a network A∗ on H. Define B as in
(SA.4.6). By definition, for any pair of agents in this set, the potential links between them
must be robust. Let

×
C∈C(T�ζ)

ENS(TS(C)� ζS(C))=
{
A∗ ∈ A(Nn) : A∗

C ∈ ENS(TS(C)� ζS(C))|C ∀C ∈ C(T�ζ)�

A∗
ij = 1

{
inf
s
Vn(s�Ti�Tj� ζij) > 0

}
∀(i� j) ∈ B

}
�

which is analogous to (SA.4.7). We state our proposed procedure in Algorithm SA.2.

Assumption SA.5.2. Assumptions 2 and 3 hold with D given by (SA.5.2) and τi replaced
with Ti for all i.

Theorem SA.5.1. Suppose evaluating Dij and Vij(A�T�ζ) have the same complexity for
any i, j. Under Assumptions SA.5.1 and SA.5.2, Algorithm SA.2 computes ENS(T�ζ) in



34 Michael P. Leung Supplementary Material

Algorithm SA.2: Procedure for computing the set of Nash stable networks.

Input: T , ζ , {Ui(·) : i ∈ Nn}
Output: ENS(T�ζ)

1 Compute D̃ and then C(T�ζ) using depth-first search of D̃.
2 Compute each ENS(TS(C)� ζS(C)) using exhaustive search:

for C ∈ C(T�ζ) do
ES(C) ← ∅
for A ∈ A∗(C�T�ζ) do

if Ui(A�T�ζ) > Ui((ai�A−i)�T�ζ) ∀ai ∈ A∗
i (C�T�ζ)� i ∈ C then

ES(C) ← ES(C) ∪ {A}
end

end
ENS(TS(C)� ζS(C))← ES(C)

end
3 Combine equilibrium sets:

if ENS(TS(C)� ζS(C)) �= ∅ ∀C ∈ C(T�ζ) then
ENS(T�ζ) ←×C∈C(T�ζ) ENS(TS(C)� ζS(C))

else ENS(T�ζ)← ∅.

Op(min{n2+q�n2 + n1+3q}) evaluations of the payoff function for q > log 2/ log‖λ‖−1
m�k,

where ‖λ‖m�k is defined in Assumption SA.5.2.

Proof. See Section SA.5.3.

Remark SA.5.1. Under sparsity (see Remark 4), for typical specifications, Sij(A�T) will
be asymptotically bounded. However, in many specifications, verifying Assumption 2
requires uniform boundedness, so that the supremum over Sij(A�T) in the definition
of D is finite with positive probability. Uniform boundedness is not satisfied in Exam-
ple SA.5.1 due to the summations in the payoff function. This can be fixed by adding
to the payoff function Ci(Ai), a capacity constraint that equals −∞ if i’s degree exceeds
some chosen value C̄ and otherwise equals zero. Ridder and Sheng (2017) imposed uni-
form boundedness by scaling the sums in the payoff function in Example SA.5.1 by n−1.
Uniform boundedness is also maintained in Graham (2016), Leung (2019), and Menzel
(2017).

SA.5.3 Proof of main result

Proof of Theorem SA.5.1. Line 1. Given T , ζ , computing D̃ takes O(n2) steps, since we
need to compute Dij for each pair of agents. As discussed in Remark SA.4.1, computing
C(T�ζ) takes O(n+L) time, where L is the number of links in D̃. The expected number
of links is 0�5E[∑i

∑
j D̃ij] ≤ n2E[Dij +Dji], which is O(n) by Assumption SA.5.2. Hence,

L= Op(n
2), so line 1 of the algorithm requires Op(n

2) steps.
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Line 2. For each component C, we have to iterate through every element of
A∗(S(C)�T�ζ). The number of such elements is 20�5

∑
i�j∈C Dij . Then for each element of

A∗(S(C)�T�ζ), the algorithm loops through all |C| agents to verify Nash stability. Specif-
ically, for each agent i, we need to evaluate Ui((ai�A−i)�T�ζ) for each ai ∈ A∗

i (C�T�ζ).

Note that |A∗
i (C�T�ζ)| = 2

∑
j∈C Dij , so for each element of A∗(C�T�ζ), the number of

evaluations is order
∑

i∈C 2
∑

j∈C Dij . These computations are repeated for every compo-
nent, resulting in a total of order

∑
C∈C(T�ζ)

20�5
∑

i�j∈C Dij
∑
i∈C

2
∑

j∈C Dij ≤ n
(

max
C∈C(T�ζ)

20�5
∑

i�j∈C Dij

)3

evaluations. By Lemma SA.4.1, maxC∈C(T�ζ) 20�5
∑

i�j∈C Dij = Op(n
q). Hence, the previous

display is Op(n
1+3q).

We can derive an alternative bound:∑
C∈C(T�ζ)

20�5
∑

i�j∈C Dij
∑
i∈C

2
∑

j∈C Dij ≤ n
(

max
C∈C(T�ζ)

20�5
∑

i�j∈C Dij

)
2maxi∈Nn

∑n
j=1 Dij �

By Lemma SA.5.1 below, 2maxi∈Nn

∑n
j=1 Dij = Op(n). Hence, the previous display is

Op(n
2+q).

Line 3. Under Assumption SA.5.1, we can apply Lemma SA.5.3, which proves that the
algorithm has the desired output.

Lemma SA.5.1. Under Assumption SA.4.2,

2maxi∈Nn

∑n
j=1 Dij = Op

(
n(1+c) log 2)�

for any c > 0. In particular, the left-hand side is Op(n).

Proof. Define Mn = n(1+c) log 2 for any c > 0. Note that for c = 0�1, Mn < n, which estab-
lishes the second claim.

By the union bound,

P
(
2maxi∈Nn

∑n
j=1 Dij >Mn

) ≤ nP
(∑

j

Dij >
logMn

log 2

)
� (SA.5.4)

Note that conditional on Ti,
∑

j Dij is a binomial random variable with mean μn(t) ≡
(n − 1)E[Dij | Ti = t]. A binomial concentration bound (Penrose (2003, Lemma 1.1))
yields

(SA.5.4) ≤ nE
[

exp
{
−μn(Ti)

(
1 + logMn

μn(Ti) log 2

(
log

(
logMn

μn(Ti) log 2
− 1

)))}]
= O

(
ne− logMn/ log 2E

[
e−μn(Ti)

])
� (SA.5.5)

By Assumption SA.4.2 (specifically, the analog of Assumption 2),

E
[
e−μn(Ti)

] ≤ exp
{

sup
t

∫
Rd

ϕ
(
t� t ′

)
dμ

(
t ′
)}

�
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which is finite by Assumption SA.4.2 (specifically, the analog of Assumption 3(b)). Then

(SA.5.5) = nelogM−(log 2)−1
n = n−c�

Therefore, (SA.5.4) = o(1).

Lemma SA.5.2. Under Assumption SA.5.1, for any C ∈ C(T�ζ),

ENS(TS(C)� ζS(C))= ENS(T�ζ)|S(C)�

Proof. We first prove that

ENS(TS(C)� ζS(C))⊆ ENS(T�ζ)|S(C)�

Let A ∈ ENS(TS(C)� ζS(C)) and A′ ∈ ENS(T�ζ). Construct a network A∗ by defining

A∗
k� =

{
Ak� if k�� ∈ S(C)�

A′
k� otherwise.

That is, we take A′ and replace the subnetwork on S(C) with AS(C). It suffices to show
A∗ ∈ ENS(T�ζ).

Consider an agent i, and let Ci be the element of C(T�ζ) containing i. We show that
A∗

i is a “best response” for i to A∗ in the sense that (SA.5.1) holds. For any agent j ∈
Nn\S(Ci), we have sups Vn(s�Ti�Tj� ζij) ≤ 0 and sups Vn(s�Tj�Ti� ζji) ≤ 0 by definition of
strategic neighborhoods. Then by Assumption SA.5.1, agent i’s payoff is not a function of
any link in A∗ involving j. Hence, to assess the optimality of A∗

i , we only need to consider
the subvector restricted to S(Ci). But that subvector is a best response to the submatrix
of A∗ restricted to S(Ci) by definition of A, so the claim follows.

Next, consider j ∈ Nn\S(Ci). We show that A∗
i is a “best response” for j to A∗ in the

sense that (SA.5.1) holds. There are three cases to consider. First, suppose k ∈ Nn\S(Cj).
Then sups Vn(s�Tj�Tk� ζjk) ≤ 0 and sups Vn(s�Tj�Ti� ζji) ≤ 0 by definition of strategic
neighborhoods, so by Assumption SA.5.1, agent j’s payoff is not a function of any link
in A∗ involving k. The second case is k ∈ S(Cj)\S(Ci). Then A∗

jk = A′
jk. The third case

is k ∈ S(Cj)∩ S(Ci). Of course, k /∈ Ci ∩Cj , since these are disjoint sets by definition. So
by construction of strategic neighborhoods, it must be that any link involving k and an
agent � ∈ S(Ci) ∩ S(Cj) is robust, in which case Ak� = A′

k� = A∗
k� and A�k = A′

�k = A∗
�k

by definition of robustness.
We have therefore established that (1) the only potential links of the networks A′ and

A∗ that may differ are those of agents {k��} � S(Nn\Ci), and (2) the payoff of any agent
j ∈ Nn\Ci is not function of the links and types of such agents k, � under A∗. Then since
A′ ∈ ENS(T�ζ), it follows that A∗

i is a “best response” to A∗.
Step 2. We prove that

ENS(TS(C)� ζS(C))⊇ ENS(T�ζ)|S(C)�

Let A ∈ ENS(T�ζ)|S(C). By definition, there exists A′ ∈ ENS(T�ζ) such that A =
A′
S(C). Fix an arbitrary agent with associated component Ci and j ∈ Nn\S(Ci). Then
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sups Vn(s�Ti�Tj� ζij) ≤ 0 and sups Vn(s�Tj�Ti� ζji) ≤ 0 by definition of strategic neighbor-
hoods, so by Assumption SA.5.1, i’s payoff is not a function of any link in A′ involving j.
Therefore, A′

i being a best response to A′ (in the sense of (SA.5.1)) implies that the sub-
vector of A′

i on S(C) is a best response to the subnetwork A′
S(C) in the game only involv-

ing agents in S(C). But this subvector is exactly Ai, and the subnetwork is exactly A, so
the claim follows.

Lemma SA.5.3. Under Assumption SA.4.1,

×
C∈C(T�ζ)

ENS(TS(C)� ζS(C))|C = ENS(T�ζ)�

Proof. Step 1. Let A∗ ∈×C∈C(T�ζ) ENS(TS(C). This set is well-defined because for any
pair of agents (i� j), either i� j ∈ C for some C ∈ C(T�ζ), or (i� j) ∈ B. Consider any i� j ∈
Nn. If (i� j) ∈ B, then by definition of robustness, A∗

ij has the same value in any Nash
stable network.

Suppose i ∈ C for some C ∈ C(T�ζ). We first prove that

A∗
S(C) ∈ ENS(TS(C)� ζS(C))� (SA.5.6)

By construction of A∗, there exists A ∈ ENS(TS(C)� ζS(C)) such that A∗
C = AC . Fur-

thermore, for any j�k ∈ S(C) such that {j�k} � C, Ajk =A∗
jk and Akj =A∗

kj are necessar-
ily robust by definition of strategic neighborhoods. Therefore, A∗

S(C) = A, which proves
(SA.5.6).

This establishes that, in the game where the set of players is given by S(C), the sub-
vector of A∗

i on S(C) is a best response for i to A∗
S(C) in the sense that (SA.5.1) holds. In

fact, A∗
i is a best response to A∗ in the game with all n players. This is because, as argued

in the second paragraph of the proof of Lemma SA.5.2, i’s payoff is not a function of the
links in A∗ involving agents j /∈ S(C) by Assumption SA.5.1.

We have thus proved that A∗ ∈ ENS(T�ζ). Hence,

×
C∈C(T�ζ)

ENS(TS(C)� ζS(C))|C ⊆ ENS(T�ζ)�

Step 2. We prove the ⊇ direction. Let A∗ ∈ ENS(T�ζ). By definition of robustness,
A∗

ij = 1{infs V ∗
n (s�Ti�Tj� ζij� ζji) > 0} for any i� j ∈ B. Let C ∈ C(T�ζ). Then A∗

S(C) ∈
ENS(TS(C)� ζS(C)) by Lemma SA.2.2. Hence, A∗

C ∈ ENS(TS(C)� ζS(C))|C , so

A∗ ∈
{
A∗ ∈ A(Nn) : A∗

C ∈ ENS(TS(C)� ζS(C))|C ∀C ∈ C(T�ζ)�

A∗
ij = 1

{
inf
s
V ∗
n (s�Ti�Tj� ζij� ζji) > 0

}
∀(i� j) ∈ B

}
�

as desired.
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