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We consider a set of potentially misspecified structural models, geometrically
combine their likelihood functions, and estimate the parameters using compos-
ite methods. In a Monte Carlo study, composite estimators dominate likelihood-
based estimators in mean squared error and composite models are superior to
individual models in the Kullback–Leibler sense. We describe Bayesian quasi-
posterior computations and compare our approach to Bayesian model averaging,
finite mixture, and robust control procedures. We robustify inference using the
composite posterior distribution of the parameters and the pool of models. We
provide estimates of the marginal propensity to consume and evaluate the role of
technology shocks for output fluctuations.
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1. Introduction

Over the last 20 years, dynamic stochastic general equilibrium (DSGE) models have be-
come more detailed and complex, and numerous features have been added to the orig-
inal real business cycle core. Still, even the best practice DSGE model is likely to be mis-
specified either because features such as heterogeneities in expectations are missing, or
because researchers leave out aspects deemed tangential to the analysis. While speci-
fying an incomplete model is acceptable, for example, when qualitatively highlighting
a mechanism which could be present in the data, misspecification becomes an issue
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when one wants to quantify the importance of certain shocks or estimate the magni-
tude of crucial policy trade-offs.

In theory, misspecification can be reduced by making structural models more com-
prehensive in their description of the economic relationships and of the interactions
among agents. In practice, this is difficult because it is not clear which missing feature
is relevant and jointly including several of them quickly makes the computations in-
tractable and the interpretation difficult. Moreover, large scale models are hard to esti-
mate with limited data and parameter identification problems are likely to be important
(see, e.g., Canova and Sala (2009)). The standard short cut to deal with misspecification is
to use a structural model with ad-hoc reduced form features. However, in hybrid models
it is often hard to distinguish the relative importance of structural versus ad hoc features
in matching the data, making policy counterfactuals whimsical.

Structural vector autoregressive (VAR) models or limited information moment-
based estimation approaches can deal with model incompleteness or partially spec-
ified dynamic relationships, when, for example, characterizing the dynamics in re-
sponse to shocks (see, e.g., Kim (2002); or Cogley and Sbordone (2008)). Full informa-
tion likelihood-based methods, however, have a hard time dealing with misspecifica-
tion other than that of the distribution of the error term, and are justified asymptoti-
cally only under the assumption that the estimated model correctly characterizes the
data generating process (DGP) up to a set of serially and cross-sectionally uncorrelated
disturbances. To avoid this problem, the recent econometric literature dealing with mis-
specification does not employ the likelihood in the estimation process (see, e.g., Cheng
and Liao (2015); Thryphonides (2016)) and robustness approaches modify posterior in-
ference to reduce the chance of incorrect decisions (see Hansen and Sargent (2008); Gi-
acomini and Kitigawa (2017)). The tension between theoretical developments and em-
pirical practice becomes clear when one notices that the vast majority of the applied
literature employs full information likelihood-based (classical or Bayesian) procedures
to estimate structural parameters and policy prescriptions are often formulated on the
basis of potentially misspecified models.

This paper proposes a new approach to reduce the inherent misspecification of
DSGE models. Rather than enriching a particular model with structural or ad hoc fea-
tures, as it is common in the literature, we jointly consider a finite set of potentially mis-
specified models, geometrically combine their likelihood functions, and estimate the
parameters using the composite likelihood. With such an objective function, parame-
ters common across models are estimated using the cross equation restrictions present
in all specifications; model specific parameters are instead estimated using the cross-
equation restrictions appearing only in that specification. When no parameter can be
safely assumed to be common across models, composite and likelihood estimators co-
incide. Thus, the composite likelihood guards against misspecification by requiring es-
timates of the common parameters to be consistent with the structure of all models.

Although the composite likelihood approach is well established in the statistical lit-
erature (see, e.g., Varin, Read, and Firth (2011)), economic applications are limited to
Engle, Shephard, and Sheppard (2008), Qu (2018), and Chan, Eisenstat, Hou, and Koop
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(2018). Nevertheless, in all the literature we are aware of the DGP is known; the com-
posite likelihood combines marginals or conditionals of the DGP; and the composite
weights are fixed. In our setup, instead, the DGP is unknown; the models entering the
composite likelihood are assumed to be misspecified; and the composite weights are
random variables. Whereas this paper focuses on misspecification, Canova and Matthes
(2019) used the methodology to address a number of inferential and computational
problems in structural estimation.

The Bayesian setup we work with is grounded in the Bayesian literature on misspec-
ified models (see Walker (2012), Bissiri, Holmes, and Walker (2016)) and related to the
quasi-Bayesian estimation literature (see, e.g., Kim (2002), Marin, Pudlo, Robert, and Ry-
der (2012), Scalone (2018)), to Bayesian shrinkage (see, e.g., Del Negro and Schorfheide
(2004); Batthacharya, Pati, Pillai, and Dunson (2012)) and to smoothness priors (see, e.g.,
Barnichon and Brownlees (2019)). As in quasi-Bayesian approaches, we substitute the
likelihood function with an alternative loss function and perform Bayesian inference
with the resulting quasi-posterior; and as in the shrinkage and smoothness prior litera-
ture, we employ additional information to regularize parameter estimates. The posterior
weight of a model plays a role in the inferential process, as in the Bayesian model aver-
aging (BMA) literature (see Claeskens and Hjort (2008)). We differ in three aspects: BMA
can be employed only when models share the same observables while our approach
works even when models feature different observables. In BMA, each model is estimated
separately and posterior weights are used to combine their predictions. Here, estimates
of the common parameters are jointly obtained and posterior weights can be used to
combine models’ predictions, if that is of interest. Our setup quantifies the uncertainty
in the weight estimates. To the best of our knowledge, this cannot be done in BMA exer-
cises.

Our approach shares similarities with the methods of Del Negro and Schorfheide
(2004) and Waggoner and Zha (2012), but three important differences need to be empha-
sized. We consider combinations of structural models; they combine a structural and a
VAR model. Waggoner and Zha assumed that the DGP is the mixture of the models; we
leave open the possibility that the composite model is still misspecified. Finally, while
our approach allows for models with different observables, in the other approaches the
models must share the same observable variables.

We describe a Monte Carlo Markov Chain (MCMC) approach to draw sequences
from the quasi-posterior distribution of the parameters, show how to adjust the per-
centiles to ensure the right asymptotic coverage, discuss the computational costs of the
approach, and explain how posterior weights inform us about the relative misspecifica-
tion of the models entering the composite pool. We also show how to combine models
and composite estimates for inference. While some researchers may use the posterior
weights to select a model to conduct inference, we prefer to robustify the analysis using
composite predictions.

Using a simple Monte Carlo design, we demonstrate that composite estimators are
preferable to likelihood-based estimators when misspecification is present in a mean-
squared error (MSE) sense, that composite models are closer to the true DGP in a
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Kullback–Leibner (KL) sense, and that BMA and the posterior mode of the weights pro-
vide similar information when the models share the same observables.

We apply the methodology to estimate the marginal propensity to consume (MPC)
out of transitory income and to evaluate the role of technology shocks for output fluc-
tuations. The MPC is generally low when models are separately estimated because tran-
sitory income has insufficient persistence, except when one allows for precautionary
savings. When a composite estimate of the persistence parameter is used, the MPC gen-
erally increases. We show that problematic features of the basic specification such as
quadratic preferences, separability of durable and nondurable consumption, exogenous
real rate, lack of production, and consumers homogeneity are irrelevant for the estima-
tion of the MPC and that composite and BMA estimates of the MPC are similar. We also
show that a standard ad-hoc model is inferior to the composite model in a KL sense.

Consistent with the existing literature, we find that technology shocks account for
about one-third of output fluctuations 20–30 quarters ahead in a standard medium scale
New Keynesian model. We pair the model with a smaller scale New Keynesian model
without capital, and jointly estimate the slope of the Phillips curve and the persistence
of technology shocks. We find that the share of output fluctuations explained by technol-
ogy shocks substantially increases because the smaller model receives a high posterior
weight and forces estimation to move to a region of the parameter space where nominal
rigidities are smaller, real rigidities are larger, and demand shocks are less autocorre-
lated, all of which make technology shocks more important.

The paper is organized as follows. The next section presents the problems one faces
when a misspecified model is used for economic analyses and describes the approaches
used to make the estimation results more credible. Section 3 presents our method. Sec-
tion 4 describes a MCMC procedure to draw sequences from the quasi-posterior of the
parameters and the weights; and explains how to construct impulse responses, coun-
terfactuals, and predictions using the pool of models. Section 5 applies the composite
approach to two problems. Section 6 concludes. A number of on-line Appendices con-
tain relevant technical material.

2. Estimating misspecified structural models

Suppose a researcher is interested in measuring the MPC out of transitory income. In-
terest in the MPC may arise because the fiscal authority is planning to boost aggregate
demand via a temporary tax cut, or because a researcher wants to design optimal poli-
cies to enhance aggregate savings and investments. Typically, one solves an off-the-shelf
permanent-income, life-cycle model, and derives implications for the MPC. For exam-
ple, in a representative agent model with quadratic preferences, constant real rate, when
β(1 + r) = 1, and the exogenous labor income has permanent and transitory compo-
nents, the decision rules are (see Inoue, Rossi, and Kuo (2020)):

ct = r

r + 1
at +

(
yPt + r

1 − ρ+ r y
T
t

)
� (1)

at+1 = (1 + r)(at + (
yTt + yPt

) − ct
)
� (2)
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yTt = ρyTt−1 + e1t � (3)

yPt = yPt−1 + e2t � (4)

where yTt is real transitory income, yPt is real permanent income, ct is real nondurable
consumption, at are real asset holdings, all in per-capita terms, eit ∼ i.i.d.N(0�σ2

i )� i =
1�2, r is the constant real rate of interest, and ρ the persistence of the transitory income
process.

Equations (1)–(4) provide three important restrictions on the data. First, r and ρ are
the only deep parameters mattering for the MPC; preference parameters are not iden-
tifiable from the decision rules. Second, the relationship between consumption and in-
come is static. Third, the MPC out of transitory income, MPCyT = r

1−ρ+r , is intermediate
between the MPC out of asset holdings, MPCa = r

r+1 , and the MPC out of permanent
income, MPCYP = 1.

Given this model, one could estimate MPCyT in a number of ways. If some unex-
pected temporary tax cut occurred in the past and individual consumer data is available,
one can use this natural experiment to see how much of the transitory income the tax re-
bate has generated is spent. For example, in the US, Johnson, Parker, and Souleles (2006)
found that after the 2001 tax rebate, agents spent about 20–40% of the additional income
in first quarter and about 60% of the cumulative income over 2 quarters. Parker, Soule-
les, Johnson, and McClelland (2013) reported that after the 2008 tax rebate, agents spent
about 20% of the additional income on nondurable consumption goods and 30–40% on
durable consumption goods.

Natural experiments are effective tools to understand how agents behave. However,
they are not often available and, even if they were, individual consumer data is hard to
get. One approach to estimate MPCTy that uses theory as a guideline for the investigation
but does not condition on the restrictions it provides in estimation, is to identify a per-
manent and a transitory shock in a VAR with (yt� at� ct) and then measure the effects on
consumption of a transitory income shock, scaling the measurement by the income re-
sponses. Estimates obtained this way vary between 0�4 and 0�6, depending on the model
specification and the sample employed.

To derive estimates of MPCTy , one could also partially condition on the restrictions
of the model. For example, one could use moment conditions to estimate r and ρ. Since
in industrialized countries the average real rate is about 1% per quarter and the persis-
tence of the growth rate of aggregate income is around 0�5–0�7, MPC estimates obtained
this way are in the range (0�05–0�10). Clearly, refinements are possible. One could group
data according to characteristics of consumer i and report a (weighted) average of the re-
sulting MPCyTi

. Estimates constructed this way are also low and in the range (0�10–0�15);

see, for example, Carroll, Slacalek, and Tokouka (2017).
A final approach would be to take the implications of the model seriously, write

down the likelihood function for (ct� at� yt) and impose the cross equation restrictions
the decision rules imply (in particular, the fact that r and ρ appear in different equations)
to estimate MPCyT . The evidence we present in Section 5.1 suggests that likelihood-
based estimates of MPCyT are in the range of 0�10–0�15 for the first quarter and 0�2–0�25
for the first year, roughly the same as when moments conditions are used.
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In sum, MPCyT estimates obtained conditioning on the model’s implications tend
to be lower than estimates obtained otherwise. One reason for the difference is that
the model employed in formal estimation is likely to be misspecified: the real rate is
not constant; labor income is not exogenous; preferences may feature nonseparable
consumption-labor supply decisions. Moreover, the model leaves out aspects that could
matter for understanding consumption decisions: income uncertainty does not play any
role; home production and goods durability are disregarded; agents are homogeneous
but, in the real world, some have zero assets; and others may be rich, but liquidity con-
strained. Finally, measurement errors in the real value of assets are probably important.

While moment-based and VAR-based estimates are robust to some form of misspec-
ification (e.g., lack of dynamics in the decision rules) and to the omission of certain
features from the model, likelihood-based estimates are not. Thus, if misspecification
is suspected, estimates obtained relaxing the restrictions the model imposes may be
preferable. However, if a researcher insists on using likelihood methods, how can she
guard herself against misspecification?

An obvious way is to estimate a more complex model which includes potentially
missing features, allows for general equilibrium effects on income and the real rate, uses
flexible functional forms for preferences and technologies, and permits relevant hetero-
geneities. While feasible, it is generally computationally demanding to estimate large
scale models, identification issues linger in the background, and it is often difficult to
interpret the dynamics one obtains. Alternatively, one could enrich the model with ad-
hoc features. For example, it is nowadays popular to use models with external habit in
consumption, even if the micro foundations of such a mechanism are still debatable
(one exception is Ravn, Schmitt-Grohe, and Uribe (2006)). With habit, the decision rules
of our workhorse model are (see Alessie and Lusardi (1997)):

ct = h

1 + hct−1 +
(

1 − h

1 + h
)
wt� (5)

wt = r

1 + r ((1 + r)at−1 +
∞∑
t=τ
(1 + r)t−τEt

(
yPτ + yTτ

)
� (6)

yTt = ρyTt−1 + e1t � (7)

yPt = yPt−1 + e2t � (8)

where h is the habit parameter. Thus, habit helps to account for serial correlation in con-
sumption and for the predictability of current consumption, given permanent wealth
wt ; it also makes the serial correlation properties of consumption and income discon-
nected. Adding ad hoc features is convenient but makes the model less structurally inter-
pretable and may produce overfitting. In addition, some ad hoc additions may not lead
to better models. For example, adding a preference shock (to capture demand driven
changes) to the baseline model would not alter MPCyT .

Adding these types of features may not be appealing to certain researchers. For this
reason, a portion of the literature has instead preferred to alter the statistical proper-
ties of shocks, making the stochastic processes more flexible (see, e.g., Del Negro and
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Schorfheide (2009); Smets and Wouters (2007)) or allowing cross-shock correlation (Cur-
dia and Reis (2010)).

A final approach has been to complete the probability space of the model by adding
measurement errors to the decision rules (Ireland (2004)), wedges to optimality condi-
tions (Chari, Kehoe, and McGrattan (2007)), margins to preferences and technologies
(Inoue, Rossi, and Kuo (2020)), or agnostic structural shocks to the decision rules (Den
Haan and Drechsel (2018)). Rather than tinkering with the inputs or the specification of
the model, all these approaches take the structure as given and add nonstructural fea-
tures for estimation purposes only. Typically, the relevance of the add-ons is measured
by the marginal likelihood. Kocherlakota (2007) has examples where using fit to select a
model among potentially misspecified candidates may lead researchers astray.

While all these approaches acknowledge model misspecification and may be useful
in specific situations of interest, they have at least three drawbacks. First, they condi-
tion on one model but there are many potential models a researcher could entertain—
specifications could be indexed, for example, by the economic frictions models impose.
Second, they neglect the fact that different models may be more or less misspecified
in different periods (see, e.g., Del Negro, Hasegawa, and Schorfheide (2016)). Third, the
interpretation of the model’s internal dynamics becomes difficult if the add-ons are se-
rially correlated and statistically important and no respecification of the structure is at-
tempted.

3. A composite likelihood approach to misspecification

Rather than taking an off-the-shelf model and enriching it with nonstructural features
or shocks, or completing its probability space with measurement errors, wedges, or mar-
gins we take an alternative viewpoint because even with additions, the enlarged models
may be far from the DGP. Our basic assumption is that, to investigate a question of inter-
est, a researcher may employ a number of misspecified structural models. These models
may differ in the assumptions they make, in the frictions they feature, in the aspects they
leave out, or in the transmission mechanism they emphasize. We assume they are the-
oretically relevant, in the sense that they have implications for the phenomenon under
investigation, that are sufficiently heterogeneous so that the information they provide
does not entirely overlap, and that share some common parameters. We construct the
likelihood function of each model and geometrically combine them. The resulting com-
posite likelihood is either maximized with respect to the unknown parameters or used
as an input for quasi-posterior analysis.

Our approach is not designed to eliminate misspecification. This is a titanic task,
given our focus on structural models and can be achieved only if the set of models spans
the DGP, a very strong requirement given the structures available in macroeconomics,
or if we complement the set of misspecified structural models with an unrestricted VAR
as in Waggoner and Zha (2012). More modestly, we propose an approach that has the
potential to reduce misspecification, has useful economic interpretations, and sound
econometric foundations.

Why would noticing that there are common parameters across models help to re-
duce misspecification when measuring the MPC? When likelihood methods are used,
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estimated parameters adjust to reduce the misspecification in the direction that it is
largest. If different models are estimated separately, biases will tend to be heterogeneous
and likely to reflect the worst misspecification “direction” each model displays. When
models are jointly estimated, however, common parameters are not as free to adjust,
because they are constrained by the cross equations restrictions present in all models.
Thus, if models which are misspecified in different directions are combined in estima-
tion, biases in the common parameters may be reduced and the quality of inference may
improve. We show in Section 3.4 that this intuition works in a Monte Carlo setting.

Let the DGP for a vector of variables yt be represented by a densityF(yt |ψ), whereψ is
a parameter vector. The available models are indexed by i= 1� � � � �K and each produces
a density fi(yit |φi) for the observables yit , which we assume it is of length Ti. yit need not
be the same for each i: there may be common and model specific variables. The sample
size Ti could also be different and the frequency of the observations may vary with i.
Let φi = [θ′�η′

i]′, where θ are common across specifications and ηi are model specific.
Investigators are typically free to choose what goes in θ and ηi. Even though a parameter
may appear in all models, a researcher may decide to treat it as model specific because,
for example, models are too incompatible with each other. We assume that the K models
are misspecified, that is, there is no φi such that f (yit |φi) = F(yt�ψ)�∀i. Given a vector
of weights, 0<ωi < 1�

∑
i ωi = 1, the composite likelihood is

CL(θ�η1� � � � �ηK� y1t � � � � � yKT )=ΠK
i=1f (yit |θ�ηi)ωi ≡ΠK

i=1L(θ�ηi|yit)ωi (9)

3.1 A taxonomy of misspecified DSGE models

Let the data be generated by a (linear) Gaussian state space model:

xt =A(ψ)xt−1 +B(ψ)et� (10)

zt = C(ψ)xt−1 +D(ψ)et� (11)

where xt is a k × 1 vector of endogenous and exogenous states, zt is a m × 1 vector of
endogenous controls, et ∼N(0�Σ(ψ)) is a q× 1 vector of disturbances, Σ(ψ) a diagonal
matrix, and ψ a vector of structural parameters; A(ψ) is k × k, B(ψ) is k × q, C(ψ) is
m× k, D(ψ) is m× q. For convenience, let the eigenvalues of A(ψ) all be less than one
in absolute value. We assume that a researcher observes yt = [x′

t � z
′
t]′. If there are latent

variables and only a subset of variables y1t ⊂ yt is observed, the equations below apply
replacing yt with y1t . There are three possible types of misspecification a DSGE model
may display: it may feature the wrong disturbances, the wrong structure, or the wrong
observable variables.

Misspecifying the disturbances Assume that a researcher has the correct A(ψ)�B(ψ)�
C(ψ)�D(ψ) matrices and the correct yt but specifies only a subset of the disturbances
present in the DGP, say e1t . Thus, the researcher uses

xt =A(ψ)xt−1 + B̄1(ψ)e1t � (12)

zt = C(ψ)xt−1 + D̄1(ψ)e1t � (13)
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to estimate the parameters ψ. The log-likelihood of (10)–(11) is proportional to (yt −
M(ψ)yt−1)N(ψ)

ΣeN(ψ)
′(yt − M(ψ)yt−1)

′, where M(ψ) = [A(ψ) 0
C(ψ) 0

]
�N(ψ) = [B(ψ)�D(ψ)]′. The log-

likelihood of (12)–(13) is proportional to (yt − M(ψ)yt−1)N̄(θ�η)Σe1N̄(θ�η)
′(yt −

M(ψ)yt−1)
′, where N̄(ψ)= [B̄1(ψ)� D̄1(ψ)]′ and Σe1 = Σ(θ�η), where θ and η are param-

eter vectors such that θ belongs toψ, whileηmay not. WhileM(ψ) could be consistently
estimated as long as the omitted shocks are uncorrelated with yt−1, the fact that N̄(ψ)
is forced to capture the effect of omitted disturbances implies that ψ cannot be consis-
tently estimated from (12)–(13).

Misspecifying the structure Assume that the researcher has the correct endogenous
variables yt , the correct number and the right sources of disturbances et , that is, if there
is a monetary disturbances in the data-generating process the misspecified structure
also features a monetary shock, but employs the wrong model for the analysis, mean-
ing either that the mapping betweenA(ψ)�B(ψ)�C(ψ)�D(ψ), and ψ is incorrect or that
(θ�η) are used in place of ψ as structural parameters. Suppose, the researcher uses:

xt = Ã(θ�η)xt−1 + B̃(θ�η)et� (14)

zt = C̃(θ�η)xt−1 + D̃(θ�η)et� (15)

The log-likelihood of the estimated model is proportional to (yt−M̃(θ�η)yt−1)Ñ(θ�η)Σe
Ñ(θ�η)′(yt − M̃(θ�η)yt−1)

′ where M̃(θ�η) and Ñ(θ�η) have the same format as M(ψ)
and N(ψ). Estimates of M̃(θ�η) and Ñ(θ�η) will not asymptotically converge to M(ψ)
andN(ψ), making it impossible to consistently estimate the structural parameters. Note
that the first type of misspecification could be nested in the second type if shocks are
specific to the structure used, but we keep them separated for the sake of clarity.

Misspecifying the observable variables Here, a researcher has the correct model, and
the correct disturbances et , but uses a subvector of the endogenous variables yt for esti-
mation. Partition xt = [x1t � x2t]� zt = [z1t � z2t]; partition A(ψ)�B(ψ)�C(ψ)�D(ψ) accord-
ingly and let wt = [x1t � z1t] be the observables. In terms of wt , the DGP is1

x1t =
(
A11(ψ)+A22(ψ)

)
x1t−1 + (

A11(ψ)A22(ψ)−A12(ψ)A21(ψ)
)
x1t−2

+B1(ψ)et −
(
A22(ψ)B1(ψ)−A21(ψ)B2(ψ)

)
et−1� (16)

z1t =A22(ψ)z1t−1 +C11(ψ)x1t−1 + (
A22(ψ)C11(ψ)+C12(ψ)A21(ψ)

)
x1t−2

+D1(ψ)et +A22D1(ψ)et−1 (17)

or

x̀t =G(ψ)x̀t−1 + F(ψ)èt� (18)

z̀t =H(ψ)x̀t−1 +L(ψ)èt� (19)

1To derive this expression, we assume that x1t and x2t have the same dimension. If not the formulas are
more complicated but the essence of the argument holds.
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where x̀t = [x1t � x1t−1]′� èt = [et� et−1]′� z̀t = [z1t � z
′
1t−1]. Letting ẁt = [x̀t � z̀t], the log

likelihood of the correct model is proportional to (ẁt − R(ψ)ẁt−1)S(ψ)ΣèS(ψ)
′(ẁt −

R(ψ)ẁt−1)
′ where R(ψ)= [G(ψ) 0

H(ψ) 0

]
� S(ψ)= [F(ψ)�L(ψ)]′.

Misspecification may appear, for example, because the model used in the analysis
features an insufficient number of lags of wt to be able to capture the AR and the MA
components present in (18)–(19). Let a researcher erroneously use

x1t =A1(θ�η)x1t−1 +B1(θ�η)et� (20)

z1t = C1(θ�η)x1t−1 +D1(θ�η)et � (21)

The log likelihood of the estimated model is proportional to (wt − R1(θ�η)wt−1) ×
S1(θ�η)ΣeS1(θ�η)

′(wt − R1(θ�η)wt−1)
′ where R1(θ�η) = [A1(θ�η) 0

C1(θ�η) 0

]
� S1(θ�η) =

[B1(θ�η)�D1(θ�η)]′. Clearly, R1(θ�η), S1(θ�η) are generally inconsistent estimators of
the relevant elements of R(ψ)�S(ψ), and thus ψ cannot be consistently estimated even
when ψ= (θ�η).

The paper focuses on the second type of misspecification, which is the most se-
vere and the most common when estimating structural models. However, other types
of misspecification can be analyzed with composite methods; Qu (2018), for example,
focuses on the first form of misspecification; and Canova and Matthes (2019) on situa-
tions where different types of misspecification may be simultaneously present.

3.2 Why are composite estimators preferable under misspecification? An example

In this example, we employ partial equilibrium dynamic models as it is possible to de-
rive a simple, closed form representation for the optimality conditions that allows the
reader to understand the properties of our composite estimator. The intuition we dis-
cuss also applies, although with considerable complications, to numerical solutions ob-
tained from general equilibrium models.

The first model is an asset pricing model which gives the following Euler equation:

1 +Rt�t+1 = βEt
(
ct+1

ct

)γ
� (22)

where Rt�t+1 is the exogenous, and known at t, one period real rate on safe bonds, β
is the discount factor and γ is the risk aversion coefficient of the investor’ utility. The
second is a labor market model which gives the following labor supply equation:

N
η
t = c−γt

Yt

Nt
(1 − α)vt� (23)

where η is the inverse of the Frisch elasticity, 1 − α the labor share, (1 − α) YtNt vt = wt is
the competitive real wage and vt is a log-normal i.i.d. shock to the real wage, which we
assume is realized at each t after production and hiring decisions are made. We assume
that output and hours are exogenous with respect to the consumption process.
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Suppose one want to estimate the risk aversion γ. Log linearizing (22)–(23), we have

0 = − lnβ+ ln(1 +Rt−1�t)− γ�ct + u1t � (24)

0 = ln(1 − α)− γct − (1 +η) lnNt + lnYt + u2t � (25)

where u1t captures the expectational consumption growth error and u2t ≡ vt .
Equations (24)–(25) can be compactly written as

y1t =A+ ρx1t + v1t � (26)

y2t = B+ ρx2t + δx3t + v2t � (27)

where y1t = � ln ct A = − lnβ
γ B = ln(1 − α) x1t = ln(1 + Rt−1�t), ρ = 1

γ , y2t = ct , x2t =
lnYt�x3t = − lnNt , δ = 1+η

γ v1t = u1t
γ , v2t = u2t

γ Here, θ = ρ = 1
γ is common to the two

models; while η1 = (A�σ2
1 ), η2 = (B�δ�σ2

2 ) are (nuisance) parameters specific to each
model.

Suppose we have T1 observations pertaining to the first model and T2 observations
to the second model. The (normal) log-likelihood functions, conditional on xt , are

logL1 ∝ −T1 logσ1 − 1

2σ2
1

T1∑
t=1

(y1t −A− ρx1t )
2� (28)

logL2 ∝ −T2 logσ2 − 1

2σ2
2

T2∑
t=1

(y2t − ρx1t − δx2t )
2 (29)

and for a given 0<ω< 1, the log composite likelihood is

log CL =ω logLA + (1 −ω) logLB (30)

For simplicity, let β= 1. The maximizers of (30) are

ρCL =
(
T1∑
t=1

x2
1t + ζ1�CL

T1∑
t=1

x2
2t

)−1( T1∑
t=1

y1tx1t + ζ1�CL

T1∑
t=1

(y2t − δCLx3t )x2t

)
� (31)

σ2
1�CL = 1

T1
(

T1∑
t=1

(y1t − ρCLx1t )
2� (32)

σ2
2�CL = 1

T2
(

T2∑
t=1

(y2t − ρCLx2t − δCLx3t )
2� (33)

δCL = =
(
T2∑
t=1

x2
3t

)−1( T2∑
t=1

(y2t − ρCLx2t )x3t

)
� (34)
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where ζ1�CL = 1−ω
ω

σ2
1�CL

σ2
2�CL

measures the relative importance of the two types of information

for composite estimation. Instead, the Maximum Likelihood (ML) estimates are

ρ1�ML =
(
T1∑
t=1

x2
1t

)−1( T1∑
t=1

y1tx1t

)
� (35)

ρ2�ML =
(
T2∑
t=1

x2
2t

)−1( T2∑
t=1

(y2t − δMLx3t )x2t

)
� (36)

σ2
1�ML = 1

T1
(

T1∑
t=1

(y1t − ρ1�MLx1t )
2� (37)

σ2
2�CL = 1

T2
(

T2∑
t=1

(y2t − ρ2�MLx2t − δMLx3t )
2� (38)

δML =
(
T2∑
t=1

x2
3t

)−1( T2∑
t=1

(y2t − ρ2�MLx2t )x3t

)
� (39)

The formula in (31) is similar to those (i) obtained in least square problems with
uncertain linear restrictions (Canova (2007), Chapter 10); (ii) derived using a prior-
likelihood approach; see, e.g., Lee and Griffith (1979); and (iii) implicitly produced by
a DSGE-VAR setup (see Del Negro and Schorfheide (2004)), where T2 observations are
added to the original T1 data points. As (31) indicates, the composite estimator shrinks
the information present in (y1t � x1t ) toward the information present in (y2t � x2t � x3t ) and
the amount of shrinkage depends on (σ2

1 �σ
2
2 �ω), all of which enter ζ1. The higher ω

and σ2
2 are, the less important (y2t � x2t � x3t ) information is. Thus, when estimating com-

mon parameters, the composite likelihood gives more importance to data generated by
a model with a larger weight and lower relative standard deviation. As (32)–(33)–(34) in-
dicate, model specific parameters are estimated using the information that only that
model provides. Although the formulas are similar, these estimates differ from those
computed with the likelihood function of each model, see equations (37)–(39), because
ρCL 	= ρi�ML� i = 1�2. When θ = ∅, that is, there are no common parameters, composite
estimates are simply likelihood estimates, model by model.

When an array of models is available, composite likelihood estimates of ρ will be
constrained by the structure present in all models. For example, when an additional K-1
models have two regressors, equation (31) becomes

ρCL =
(
T1∑
t=1

x2
1t +

K∑
i=2

ζi�CL

Ti∑
t=1

x2
i2t

)−1

(

T1∑
t=1

y1tx1t +
K∑
i=2

ζi�CL

Ti∑
t=1

(
(yit − δi�CLxi3t )xi2t

)
� (40)

where ζi�CL = ωi
ω1

σ2
1�CL

σ2
i�CL

. Hence, the composite likelihood robustifies estimation, because

ρ = 1
γ estimates are required to be consistent with the cross-equation restrictions

present in all models.
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As the example indicates, y1t and y2t could be different series. The setup we use is
also consistent with the possibility that there a single model and (y1t � x1t ) (y2t � x2t ) are
the same series but with different levels of aggregation (say, aggregate vs. individual con-
sumption). Furthermore, since T1 and T2 may be different, the procedure can be used
to combine data of various length or the information available at different frequencies
(e.g., a quarterly and an annual model). T1 and T2 may also represent two samples for
the same vector of observables (e.g., before and after a financial crisis). Baumeister and
Hamilton (2019) downweight older information when conducting posterior inference.
Their procedure mimics a composite estimator where data for the earlier part of the
sample, say (y1t � x1t ), is more noisy, and thus given less weight than more recent data.

Given the shrinkage nature of composite estimators, we expect them to do well in
mean square error (MSE) relative to maximum likelihood estimators. Algebraic manip-
ulations of (31) gives ρA�CL = χρ1�ML + (1 −χ)ρ2�ML = χρ1 + (1 −χ)ρ2 +χB1 + (1 −χ)B2

where χ = 1

1+ω2 var(ρ1�ML)
ω1 var(ρ2�ML)

, var(ρi�ML) are the variances of the ML estimators, i = 1�2; ρ1 =

E(ρ1�ML) and ρ2 =E(ρ2�ML); B1 =
∑
t x1t (y1t−ρ1�MLx1t )∑

t x
2
1t

and B2 =
∑
t x2t [(y2t−δMLx3t−ρ2�MLx2t )]∑

t x
2
2t

.

Let ρ∗ be the expected value of the CL estimator and assume that ρ∗ = χρ1 + (1 −
χ)ρ2.2 To insure that MSECL is less, say, of MSE1�ML, we need (1 − χ2)E(B2

1) − (1 −
χ)2E(B2

2) − 2χ(1 − χ)EB1B2 > 0, where E denotes the expectation operator. Suppose
EB1B2 = 0, that is, the biases in ρ1�ML�ρ2�ML are independent. Then the composite esti-
mator is preferable if

1>
EB2

2

EB2
1

− 2
ω

(1 −ω)
var(ρ2�ML)

var(ρ1�ML)
(41)

(41) links the relative weights, the relative biases, and the relative variances of the max-
imum likelihood estimators of two models. Other things being equal, the higher is the
bias of the maximum likelihood estimator obtained with (y2t � x2t � x3t ), the higher should
ω be for the CL estimator to be MSE superior. Similarly, the higher is the variability of the
ML estimator constructed with (y1t � x1t ), the lower needs to be 1 −ω for the CL estima-
tor to dominate. When the ML estimators have similar biases, 1−ω

ω > 1 − 2 var(ρ2�ML)
var(ρ1�ML)

is

sufficient for the CL estimator to be MSE superior, a condition easy to check in practice.
When the biases are negatively correlated, as in the experimental design of Sec-

tion 3.4, MSE improvements can be obtained under milder restrictions. For example,
a CL estimator is preferable as long as the bias of the second ML estimator is not too
large:

EB2
2 <

1 −χ
1 +χEB

2
1 − χ

1 +χEB1B2 (42)

Thus, as intuition would suggest, whenever individual estimators have negatively corre-
lated biases, we expect the CL estimator to produce MSE improvements.

When yt has been generated by a density F(yt�ψ) but a researcher uses the density
fi(yt�φi)� i = 1� � � � �K for the analysis, one can define the Kullback–Leibler (KL) diver-

2This is a valid assumption in our setup because the models have no common equations.
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gence as

KLi(y�ψ�φi)=
N∑
j=1

F(yj�ψ) ∗ log
(
fi(yj�φi)

F(yj�ψ)

)
� (43)

which it is interpreted as the bits of information lost in characterizing yt using fi rather
than F . The KL divergence has appealing decision theory foundations and can be used
to rank misspecified models. In fact, if f1 and f2 are available and KL1(y�φ1�ψ) >

KL2(y�φ2�ψ), then f2 is less misspecified than f1. Because the composite model av-
erages different misspecified structural models, we expect it to reduce the misspec-
ification of the original models. To examine if this is the case, one could compute
K̃Li =

∫
KLi(y�φi�ψ)p(φi|y)dφi where KLi(y�φi�ψ) is the KL divergence of model i and

p(φi|y) is the (asymptotic or posterior) distribution ofφi computed in model i and com-
pare it with K̃Lg = ∫

KLg(y�χ�ψ)p(χ|y)dχ, where g(y�χ�ψ)= ∑
i fi(y�φi)

ωi is the den-
sity of the composite model, and p(χ|y) the composite (asymptotic or posterior) dis-
tribution of χ = (φ1� � � � �φK�ω1� � � � �ωK). Section 3.4 provides evidence on the perfor-
mance of composite estimators and composite models for some DGPs. To approximate
F(yt�ψ), one can use the histogram of the data or a VAR as long as standard regularity
conditions are met.

In a traditional composite likelihood approach,ωi are fixed quantities, chosen by the
investigator. When ωi is a random variable, its quasi-posterior mode informs us about
the relative misspecification of the models entering the composite likelihood. To illus-
trate this property, let p(ω) ∝ ωα1−1(1 − ω)α2−1, where α1�α2 are known, and let the
prior for (ρ�σ2

1 � δ�σ
2) be diffuse. The composite posterior kernel of ω, conditional on

(ρ�σ2
1 � δ�σ

2) is CP(ω|ρ�σ2
1 � δ�σ

2)= (Lω1 L
1−ω
2 )ωα1−1(1 −ω)α2−1. Taking logs and maxi-

mizing, we have

logL1 − logL2 + (α1 − 1)
ω

− (α1 − 1)
1 −ω = 0 (44)

This is a quadratic equation in ω and the relevant solution is 0 < ω1 < 1. Totally differ-
entiating (44), one finds that ω1 is increasing in logL1 − logL2. Completing the square
terms of the likelihoods, and conditioning on the mode estimators of (ρ�σ2

1 � δ�σ
2
2 ), one

obtains

logL1 − logL2 ∝ − 1

2σ2
1

T1∑
t=1

(y1t|t−1 − ρx1t )
2 + 1

2σ2
2

T2∑
t=1

(y2t|t−1 − ρx2t − δx3t )
2|� (45)

where yit|t−1 is the optimal predictor of yit . Thus, logL1 − logL2 reflects relative misspec-
ification (how far the predictions of each model are from the optimal predictor for each
yit ) and the mode of ω is higher when model 1 is less misspecified.3 In finite samples,

3When (y1t �X1t ) and (y2t �X2t ) are vectors the equations should be adjusted accordingly. When y1t is a
m× 1 vector and y2t is, for example, a scalar or when y1t is different from y2t , logL1 − logL2 reflects, apart
from differences in the variances, the average misspecification in all the equations of model 1 relative to
the misspecification of the single equation of model 2. Thus, if model 1 has some very poorly specified
equations, it may have low a posteriori ω, even though certain equations are correctly specified (and ρ
appears in those equations).
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0 < ω < 1. The same will hold in large samples, if y1t 	= y2t , and the models are equally
poor in characterizing y1t and y2t .

While we work under the assumption that all models are misspecified, one may like
to know what happens to our estimation approach when one model is close to best in
a KL sense. When y1t 	= y2t , no general conclusions can be drawn, even though we ex-
pect the model close to the best to receive larger weight. When y1t = y2t and as sample
size grows to infinity, ωi → 1 for the model closest to the best in a KL sense. Thus, our
composite estimates will be close to those obtained by minimizing the KL distance. We
provide some evidence on these issues in samples of moderate size in Section 3.4.

3.3 Relationship with the literature

Researchers often use Bayes factors to rank models and Bayesian model averaging
(BMA) to combine their predictions. Asymptotically, when models are misspecified the
Bayes factor selects the model closest to the data in a KL sense, regardless of the prior,
and BMA puts all weight on that model (see, e.g., Fernandez Villaverde and Rubio
Ramirez (2004)). Because the quasi-posterior mode of ωmeasures the relative misspec-
ification of the available models, we expect it to provide similar ranking information
when the data used by each model is the same. However, Bayes factors and BMA weights
can only be computed when y1t = y2t and T1 = T2; the posterior of ω can be computed
even without these restrictions. Also, our analysis provides a measure of uncertainty for
ω. No such measure is generally available for BMA weights. Finally, BMA only gives an
ex-post combination of individual model estimates. Some experimental evidence on the
performance of the two ranking devices is in Section 3.4.

It is useful to highlight how a composite setup relates to the mixture procedure of
Waggoner and Zha (2012) and to robustness approaches (Hansen and Sargent (2008),
Giacomini and Kitagawa (2017)). In Waggoner and Zha, the estimated model linearly
(rather than geometrically) combines the likelihoods of a structural model and a VAR
(rather than K structural models), but the weights have a Markov switching structure.
Their objective function is

logL=
min{T1�T2}∑

t=1

log
(
wtL

(
ρ�σ2

1 |y1t � x1t
) + (1 −wt)L

(
ρ�σ2

2 � δ|y2t � x2t � x3t
))

(46)

Simple manipulations reveal that (46) and the log of (9) differ by Jensen’s inequality
terms.

While a priori both composite and finite mixture devices are appealing, a composite
likelihood has three advantages. From a computational point of view, when the model’
decision rules have a linear structure, estimators for θ have a closed form expression
in the composite likelihood case, but not in the finite mixture case. In addition, in a
finite mixture it must be the case that y1t = y2t , and T1 = T2, since the models represent
alternatives that could have generated the same data. These restrictions are unnecessary
in the composite likelihood formulation. Finally, in Waggoner and Zha the composite
model is the DGP; here the composite model could still be misspecified, hopefully less
than the individual models.
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Hansen and Sargent (2008) robustified decisions and counterfactuals using a den-
sity for the parameters which is a tilted version of the posterior distribution. Let p(φi)≡
p(φi|yt) be the posterior of φi, computed using the information in yt . Hansen and Sar-
gent’s density is π(φi)= exp{λL(φi)}p(φi)∫

exp{λL(φi)}p(φi)dφi , where L(φi) is a loss function and λ is the

ray of a ball aroundp(φi) in which we seek robustness. Two differences between Hansen
and Sargent’s and our approach are immediately evident. In the latter, robustness is
sought for all parameters within a model; we seek robust estimators of a subset of the pa-
rameters across models. Moreover, Hansen and Sargent’s approach protects a researcher
from the worst possible outcome but it is not suited to deal with instabilities or time
variations in the DGP, if the ball is small. In our approach, the weights are endogenously
adaptable to the features of the sample.

Giacomini and Kitagawa (2017) proposed a method to conduct posterior inference
on the impulse responses of partially identified SVARs that is robust to prior choices for
the rotation matrices. They summarize the class of posteriors generated by alternative
priors by reporting a posterior mean bounds interval, interpreted as an estimator of the
identified set, and a robustified credible region, measuring the uncertainty about the
identified set. Once again, two differences with our approach are evident. First, they
seek robustness with respect to prior rotations; we are looking for estimators which are
robust across structural models. Second, they care about impulse responses in SVARs;
we care about (common) parameters in structural models.

It is also useful to relate composite and GMM estimators. A composite likelihood es-
timator with fixed model weights solves moment conditions of the form

∑
i ωi

∂L(φi|y)
∂φi

=
0. Thus, composite likelihood estimators are over-identified GMM estimators, where the
orthogonality conditions are a weighted average of the scores of each structural model
with fixed weights. The larger is the set of models considered, the more overidentified
the estimators are. When ωi are optimized, the moment conditions are similar to those
of generalized empirical likelihood (GEL) methods (see Newey and Smith (2004)) and of
minimum distance estimators (see Ragusa (2011)).

3.4 Some experimental evidence

To understand the kind of gains, one should expect from composite estimators and the
situations when these are more likely to materialize, we perform an experiment where
the DGP is a univariate ARMA(1,1): log yt = ρ log yt−1 + θ loget−1 + loget� loget ∼ (0�σ2),
and the models used in estimation are an AR(1): log yt = ρ1 log yt−1 + logut and an MA(1):
log yt = logεt + β1 logεt−1. Thus, the example fits case 2 of Section 3.1: both models
use the incorrect decision rules. We present results for four different combinations
of (ρ�θ): two generating proper ARMA processes (DGP1: β = 0�6� θ = 0�5 and DPG2:
β = 0�6� θ = 0�8, which produces larger first-order autocorrelation in log yt ); one close
to an AR(1) (DGP3: β= 0�9� θ= 0�2); and one close to an MA(1) (DGP4: �β= 0�3� θ= 0�8).
For DGP1, we present results varying σ = 0�2�0�5�0�8�1�0�1�5 and for DGP3 and DGP4
results varying T = 50�100�250. Since DGP3 and DGP4 are close to one of the estimated
models, one should expect the sample size to be more important for the conclusions
one draws about composite estimators in these cases.
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We focus attention on the relationship between the true and the estimated σ , which
is common across models.4 Because both models disregard part of the serial correlation
of the DGP, σu�σε are upward biased. Would geometrically combining the likelihoods
give a better estimate of σ? Would a composite model be less misspecified than both the
AR(1) and the MA(1)? Do the conclusions depend on the DGP or the sample size? How
do the posterior mode of ω and a BMA weight relate?

We set ω2 = 1 − ω1 and treat ω = ω1 either as fixed or as random. When it is fixed,
we construct composite estimates equally weighting the two models (ω= 0�50) or using
weights that reflect the relative mean square error (MSE) in a training sample with 100
observations. In the baseline specifications, T = 50. Since there are only two parameters
in the AR(1) and MA(1), and three in the composite models, this is actually a medium-
sized sample.

We estimate the three composite specifications, the AR(1), and the MA(1) models
with Bayesian methods. The prior for the AR (MA) parameter is truncated normal with
mean zero and variance 0�2 and the prior for σ is flat in the positive orthant. The prior
for ω is Beta(1�1). We draw sequences with 50 000 elements and keep 1 out of every 5
of the last 25 000 draws for inference. The scale parameter of the Metropolis random
walk is optimized using an adaptive scheme and the Hessian at the mode is used for the
proposal density.

Table 1 presents the mean square error of σ , computed using posterior (composite
posterior) draws (MSEj) and the KL divergence (KLj), computed averaging over poste-
rior (composite posterior) draws of the parameters, j = 1� � � � �5.

Composite specifications produce better estimates of σ and at least one of the com-
posite models has lower MSE than both the AR(1) and the MA(1). The magnitude of the
gains depends on the DGP and the persistence of the data, but not on the true σ or the
sample size T . Furthermore, there is a composite model which reduces the misspecifi-
cation of both the AR(1) and the MA(1) models—the equally weighted specification for
DGP1 and DGP2 and the random ω specification for DGP3 and DGP4—and for many
of the cases examined more than one composite model has smaller KL divergence. The
superiority of composite models is unaffected by T. The random ω specification per-
forms well in the KL metric for several parameter configurations and seems preferable
for highly persistent data or when the DGP is “close” to one of the two basic models.

Table 2 has the posterior mode of ω (which is our estimated weight on the AR(1)
model), the posterior standard deviation of ω, and the BMA weight on the AR(1) model.
Because the two models share the same observable, a comparison between BMA and
the posterior mode of ω is possible. The mode of ω and a BMA weight have similar in-
formation in the majority of cases we consider. However, when the DGP is close to an
MA(1) and T is short, the two measures disagree regarding the likelihood of the AR(1)
model. This divergence disappears when T ≥ 100 and both models put smaller weight
on such a model. Note that the posterior of ω is updated in the direction of the model
with smaller KL divergence, even when T = 50.

4σ may not be the most natural parameter one would focus attention on to perform joint estimation. We
have decided to measure the improvements of composite approaches looking just at σ to keep the design
as simple as possible.
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Table 1. Monte Carlo results.

DGP Sample
Size

Statistic CL,
Random
Weigths

CL,
Equal

Weights

CL,
MSE

Weights

AR(1) MA(1)

log yt = ρ logyt−1 +β loget−1 + loget� loget ∼N(0�σ2)

σ2 = 0�2�ρ= 0�6�β= 0�5 T = 50 MSE 0�173 0�202 0�167 0�176 0�253
KL 14�99 8�13 13�26 13�94 4�70

σ2 = 0�5�ρ= 0�6�β= 0�5 T = 50 MSE 0�061 0�075 0�058 0�066 0�107
KL 13�91 7�89 13�22 13�77 6�06

σ2 = 0�8�ρ= 0�6�β= 0�5 T = 50 MSE 0�021 0�027 0�019 0�026 0�050
KL 12�55 5�87 11�46 12�17 5�98

σ2 = 1�0�ρ= 0�6�β= 0�5 T = 50 MSE 0�008 0�011 0�007 0�012 0�030
KL 11�83 5�32 10�63 11�70 7�77

σ2 = 1�2�ρ= 0�6�β= 0�5 T = 50 MSE 0�006 0�007 0�005 0�007 0�017
KL 9�34 4�49 8�03 9�07 9�10

σ2 = 0�5�ρ= 0�6�β= 0�8 T = 50 MSE 0�148 0�168 0�205 0�204 0�292
KL 11�00 5�02 10�53 11�41 4�93

σ2 = 1�0�ρ= 0�6�β= 0�8 T = 50 MSE 0�009 0�011 0�036 0�035 0�060
KL 8�90 5�33 9�54 10�41 9�07

σ2 = 0�5�ρ= 0�9�β= 0�2 T = 50 MSE 0�028 0�169 0�020 0�021 0�429
KL 11�25 16�93 13�21 12�40 7�78

σ2 = 1�0�ρ= 0�9�β= 0�2 T = 50 MSE 0�008 0�077 0�005 0�008 0�368
KL 9�90 19�27 11�32 10�93 14�61

σ2 = 1�0�ρ= 0�9�β= 0�2 T = 100 MSE 0�006 0�152 0�005 0�007 0�173
KL 17�07 29�60 22�83 20�91 36�75

σ2 = 1�0�ρ= 0�9�β= 0�2 T = 250 MSE 0�002 0�136 0�002 0�002 0�414
KL 5�93 16�66 9�48 9�07 21�33

σ2 = 0�5�ρ= 0�3�β= 0�8 T = 50 MSE 0�131 0�152 0�171 0�189 0�179
KL 4�73 5�91 7�11 11�74 3�74

σ2 = 1�0�ρ= 0�3�β= 0�8 T = 50 MSE 0�006 0�009 0�017 0�027 0�009
KL 4�88 5�32 6�11 9�62 5�94

σ2 = 1�0�ρ= 0�3�β= 0�8 T = 100 MSE 0�007 0�011 0�023 0�033 0�011
KL 4�45 4�14 7�02 7�73 5�06

σ2 = 1�0�ρ= 0�3�β= 0�8 T = 250 MSE 0�003 0�012 0�024 0�032 0�004
KL 6�20 8�11 9�25 10�89 6�06

Note: The MSE weights for the AR(1) and the MA(1) are computed in a presample with T = 100. MSE is the mean square
error of the estimated σ ; KL measures the divergence with respect to the DGP on average using the posterior (composite pos-
terior) distribution of the parameters.

Although our approach is not designed for situations where one of the models in the
pool is the DGP, it works well also in these cases. Table 3, which presents the evolution
of the posterior of the weights as sample size increases, shows that the posterior of ω
asymptotically concentrates at the corner solution corresponding to the correct model,
although at a somewhat slower rate than a BMA weight. Furthermore, when T is small
our approach gives more conservative estimates of the weights than BMA.

In sum, our simulations show that estimation outcomes can be improved and mis-
specification reduced with composite methods. Furthermore, the posterior mode of
ω gives a model ranking device with useful properties: its modal value agrees with a
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Table 2. Posterior of ω and BMA weight.

DGP Sample Size ω Estimate (s.d) BMA Weight

log yt = ρ logyt−1 +β loget−1 + loget� loget ∼N(0�σ2)

σ2 = 0�2�ρ= 0�6�β= 0�5 T = 50 0�984 (0�03) 1�00
σ2 = 0�5�ρ= 0�6�β= 0�5 T = 50 0�984 (0�03) 1�00
σ2 = 0�8�ρ= 0�6�β= 0�5 T = 50 0�992 (0�03) 1�00
σ2 = 1�0�ρ= 0�6�β= 0�5 T = 50 0�992 (0�03) 1�00
σ2 = 1�2�ρ= 0�6�β= 0�5 T = 50 0�994 (0�03) 1�00
σ2 = 0�5�ρ= 0�6�β= 0�8 T = 50 0�984 (0�03) 1�00
σ2 = 1�0�ρ= 0�6�β= 0�8 T = 50 0�990 (0�03) 1�00

σ2 = 0�5�ρ= 0�9�β= 0�2 T = 50 0�999 (0�004) 1�00
σ2 = 1�0�ρ= 0�9�β= 0�2 T = 50 0�999 (0�008) 1�00

σ2 = 1�0�ρ= 0�9�β= 0�2 T = 100 1�000 (0�007) 1�00
σ2 = 1�0�ρ= 0�9�β= 0�2 T = 250 0�999 (0�004) 1�00

σ2 = 0�5�ρ= 0�3�β= 0�8 T = 50 0�014 (0�103) 0�994
σ2 = 1�0�ρ= 0�3�β= 0�8 T = 50 0�012 (0�057) 0�946

σ2 = 1�0�ρ= 0�3�β= 0�8 T = 100 0�008 (0�044) 0�105
σ2 = 1�0�ρ= 0�3�β= 0�8 T = 250 0�002 (0�02) 0�002

Note: The table reports the posterior mode and the standard deviation of ω and the BMA weight on the AR(1).

BMA weight in many specifications and it is superior when T is small and MA com-
ponents dominate. Finally, the quasi-posterior standard deviation of ω gives us a way
measure the credibility of the rankings—no uncertainty can be generally attached to a
BMA weight.

4. Estimation and inference

In a traditional setting, where the models entering the composite likelihood are marginal
or conditional versions of the true DGP, composite likelihood estimators are consistent

Table 3. Posterior estimates of ω.

Mode Mean Median Std Deviation BMA Weight

DGP = yt = 0�8yt−1 + et� et ∼N(0�1)
Prior 0�5 0�5 0�288
T = 50 0�994 0�978 0�985 0�023 0�991
T = 100 0�997 0�983 0�986 0�018 1�000
T = 250 0�998 0�990 0�993 0�010 1�000
T = 500 0�999 0�993 0�995 0�006 1�000

DGP = yt = 0�7et−1 + et� et ∼N(0�1)
Prior 0�5 0�5 0�288
T = 50 0�356 0�468 0�432 0�187 0�024
T = 100 0�007 0�220 0�147 0�177 0�015
T = 250 0�003 0�048 0�030 0�050 0�006
T = 500 0�002 0�034 0�021 0�030 0�002
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and asymptotically normal (see, e.g., Varin, Read, and Firth (2011)) but are inefficient,
because information about the DGP is disregarded, and ωi can be selected to minimize
their inefficiency.

Our setup differs from the traditional one in four respects. First, F(yt�ψ) is
unavailable— the process generating the data is unknown. Second, f (yit ∈ Ai�φi) are
neither marginal nor conditional densities, but misspecified approximations of the un-
known DGP. Thus, for all (φi), the KL divergence between F(yt�ψ) and f (yit ∈ Ai�φi)
is positive, ∀i. Third, f (yit ∈Ai�φi) need not be independent (models may share equa-
tions) nor compatible, in the sense that the likelihood estimator φi�ML asymptotically
converges to the same value. Finally, we treat ωi as a random variable and wish to con-
struct estimators for the common parameters θ, the nuisance parameters ηi, and the
weights ωi� i= 1�2� � � � �K.

Because all available models are misspecified, maximum likelihood estimators ob-
tained from each f (yit ∈ Ai�φi) are inconsistent and, as a consequence, the compos-
ite likelihood estimator obtained for given ωi is also inconsistent. As earlier work by
White (1982) and Domowitz and White (1982) shows, as the sample size grows and un-
der regularity conditions, φi�ML converges to φ0, the pseudo-parameter vector mini-
mizing the KL divergence from the DGP. Moreover,

√
T(φi�ML −φ0)∼N(0�G−1

i ), where
Gi =HiJ

−1
i Hi is the Godambe information matrix for model i, Ji the variability matrix

andHi the sensitivity matrix. Thus, with model misspecification the pivot of the asymp-
totic distribution is the minimizer of the KL divergence, rather than the true parameter
vector; and the Godambe (sandwich) information matrix is evaluated at the minimizer
of the KL divergence, rather than the true parameter vector.

The composite pool defines a density for a different misspecified model (a weighted
average of the K models). Whenwi are fixed,φCL asymptotically approaches the pseudo-
parameter value, say φ0�CL, minimizing the KL divergence between the density of the
composite pool and the DGP.φ0�CL is not, in general, a weighted average ofφ0�i because
models are not necessarily independent. Furthermore,

√
T(φCL − φ0�CL) ∼ N(0�G−1),

where G = HJ−1H and H and J evaluated at the composite likelihood estimator (see
Appendix A for details).

We work in a Bayesian framework rather than a classical likelihood setup. There is
a growing literature examining the properties of Bayesian estimator under model mis-
specification. For example, Fernandez Villaverde and Rubio Ramirez (2004) showed that
under mild regularity conditions—the most important ones being that the support of
the prior includes the KL optimizer and that the likelihood function can be computed—
the prior asymptotically vanishes; the posterior mode convergences in probability to the
KL optimizer; and that Bayes factor of any model over the best model under KL distance
approaches zero asymptotically. These results have been refined in a number of papers
using weaker or alternative assumptions (see, e.g., Clydec and Iversen (2013)). Further-
more, Kleijn and Van der Vaart (2012) have shown that the Bernstein–Von Mises the-
orem holds under misspecification; and Bissiri, Holmes, and Walker (2016) provided a
general framework for updating prior beliefs when the data is represented with a general
loss function. Thus, valid posterior inference can be performed, even when the model is
misspecified.
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Our analysis treats ω as a random variable, and thus seeks to construct the quasi-
posterior distributions for the structural parameters and for the ω vector. As long as
0<ω< 1, standard asymptotic results derived in the literature hold. When this is not the
case, we conjecture that results similar to those of Andrews (1999) could be established.

4.1 Bayesian quasi-posteriors

In this paper, we do not rely on asymptotic results. We combine the composite likelihood
(9) with a prior for χ = (θ�η1� � � � �ηK�ω1� � � � �ωK), compute the joint quasi-posterior,
which we then integrate with respect to the nuisance parameters to obtain the marginals
of θ and ω. We employ a multiple block Metropolis–Hastings approach to numerically
compute sequences from this joint quasi-posterior distribution.

Given (yit �Ti), we assume that sup{φi} f (yit ∈Ai�φi) < bi ≤ B <∞, a condition gen-
erally satisfied for structural macroeconometric models, that L(θ�ηi|yi�Ti) can be con-
structed for each i, and that the composite likelihood CL(χ|y1�T1� � � � � yK�Tk) exists for
0<ωi < 1,

∑
i ωi = 1. Let the priors for φi be of the form:

p(θ�ηi)= p(θ)p(ηi|θ� yi0)� (47)

where yi0 is a training sample. In (47), we allow for a data-based prior specification for
ηi, as in Del Negro and Schorfheide (2008), which is advisable to put models on the same
ground as far as matching certain statistics of the data. Making the prior ofηi data-based
also helps to avoid identification problems when ωi is close to zero and to make it more
likely that the minimizer of the KL divergence belongs to the support of the prior; see,
for example, Walker (2012).

The composite posterior kernel is

p̌(χ|y1�T1� � � � � yk�Tk)=ΠiL(θ�ηi|yi�Ti)ωip(ηi|θ� yi0)ωip(θ)p(ωi)� (48)

which can be used to estimate χ as described, for example, in Chernozukov and Hong
(2003). For computational and efficiency reasons, we employ a K + 1 block Metropolis–
Hastings algorithm. Herbst and Schorfheide (2015) also suggested drawing parameters
in blocks. While they randomly split the parameter vector in blocks at each iteration,
the blocks here are predetermined by the K models of interest. In the applications of
Section 5, the prior for ω we employ is subjective. However, one can also consider using
a training sample to calibrate it, that ism use p(ω|yio). This could help to obtain faster
convergence of the algorithm described below under standard stationarity assumptions.

When K is large, the parameter space will also be large and computations may be de-
manding. Hence, one may want to preliminarily obtain the posterior of ηi using (yi�Ti),
condition on these posterior distributions when estimating (θ�ω), and iterate. Since
only the information contained in model i is used to estimate ηi, the approach seems
sensible and practical.

4.2 MCMC algorithm

The algorithm consists of four steps:
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1. Start with some χ0 = [η0
1 · · ·η0

K�θ
0�ω0

1 · · ·ω0
K]. For iter = 1 : draws do steps 2–4.

2. For i= 1 :K, draw η∗
i from a symmetric proposal Pηi . Set ηiter = η∗

i with probability

min
(

1�
L

([
η∗
i � θ

iter−1]|yi�Ti)ωiter−1
i p

(
η∗
i |θiter−1� yi0

)ωiter−1
i

L
([
ηiter−1
i � θiter−1]|yi�Ti)ωiter−1

i p
(
ηiter−1
i |θiter−1� yi0

)ωiter−1
i

)
(49)

3. Draw θ∗ from a symmetric proposal Pθ. Set θiter = θ∗ with probability

min
(

1�
L

([
ηiter

1 � θ∗]|y1�T1

)ωiter−1
1 · · ·L([

ηiter
K θ∗]|yK�TK )ωiter−1

K p
(
θ∗)

L
([
ηiter

1 � θiter−1]|y1�T1

)ωiter−1
1 · · ·L([

ηiter
K �θiter−1]|yK�TK )ωiter−1

K p
(
θiter−1)

)

(50)

4. Drawω∗
i from a symmetric proposal Pω. Setωiter =ω∗ = (ω∗

1 · · ·ω∗
k)with probabil-

ity

min
(

1�
L

([
ηiter

1 � θiter]|y1�T1

)ω∗
1 · · ·L([

ηiter
K θiter]|yK�TK )ω∗

Kp
(
ω∗)

L
([
ηiter

1 � θiter]y1�T1

)ωiter−1
1 · · ·L([

ηiter
i � θiter]|yK�TK )ωiter−1

K p
(
ωiter−1)

)
(51)

When the proposals are asymmetric, the acceptance probability should be adjusted ap-
propriately. Note that in (49) only the likelihood of model i matters. When the K models
feature no nuisance parameters, steps 2–3 can be combined in a single step. Similarly,
when θ = ∅ steps 3 and 4 can be eliminated. Also, when ωi’s are fixed, step 4 disap-
pears. Finally, whenωi = 0� i 	= k,ωk = 1, the algorithm collapses into a standard Block–
Metropolis MCMC. A random walk proposal for (θ�ηi) works well in practice; a mul-
tivariate logistic proposal or an independent Dirichlet proposal are natural choices for
ωi if K is small. For large K, a “random walk Dirichlet” proposal seems appropriate (see
Appendix B).

Althoughω’s are time independent, adjusting the MCMC algorithm to allow for time
varying ω’s is easy. For example, one can accommodate time-varying weights nonpara-
metrically, repeating the computations using a rolling window of fixed-size data. Alter-
natively, one could consider a parametric specification for the time variations and add a
MCMC step which draws the innovations from a Dirichlet distribution. With time vary-
ing weights, one could look at their evolution to understand how the data is filtered.
Thus, as in Waggoner and Zha (2012), the cross equation restrictions of different models
could receive different weights in different portions of the sample.

4.3 Computational costs

It might be useful to highlight the computational costs of our approach. Given the struc-
ture of our algorithm, we can derive some bounds on the computation time needed in
each loop. Suppose that in a standard MCMC setup, generating a draw from the proposal
for the parameters, evaluating the associated priors, solving the model, and evaluating
the likelihood takes x seconds for the “slowest” model. Then, if we study K models,K ∗x
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seconds is the upper bound for the time it takes to go through one loop of the MCMC for
the K models. How does this number compare with the time needed to go through one
loop in our MCMC algorithm?

In our sampler, we first need to generate a draw for the proposals for the common
parameters, evaluate the associated priors, solve each model and compute the model-
specific likelihood functions.This will also take roughly K ∗ x seconds.5 We also need
to draw model-specific parameters, for which we have to generate a draw from the pro-
posal, evaluate the associated priors, solve each model and compute the likelihood func-
tions. In a brute force implementation, this would takeK ∗x seconds as well. But, condi-
tional on the common parameters, these steps can be carried out in parallel. If we have
access toK cores, this block of commands takes approximately x seconds. The final step
of our algorithm is the updating of the weights. Here, we do not need to solve the models
or compute likelihood values because neither model-specific nor common parameters
are updated, which are the main costs in terms of time. Because the cost of this final step
is negligible, the computational cost of one loop in our algorithm is roughly (K + 1) ∗ x
seconds.

4.4 Adjusting percentiles of the MCMC distribution

Our estimation problem is nonstandard since yit are not necessarily mutually exclusive
across i. Thus, for example, if all models feature a nominal interest rate, that series may
be used K times. Naive implementations of a MCMC approach produce marginal pos-
terior percentiles for θ which are too concentrated, because the procedure treats yit as
if it was independent across i (see Mueller (2013)). In Appendix B, we show that, under
regularity conditions, the composite posterior has an asymptotically normal shape, but
the covariance matrix is the sensitivity matrixH, rather than the Godambe matrixG.

To obtain the correct asymptotic coverage one could use a normal posterior with
sandwich covariance matrix. Following Ribatet, Cooley, and Davison (2012) and Qu
(2018), we directly add two steps to the MCMC algorithm to take care of the prob-
lem. In the first, we compute the “sandwich” matrix, H(χ)J(χ)−1H(χ), where H(χ) =
−E(�2p(χ|Y)) and J(χ) = Var[�p(χ|Y)] are obtained maximizing the composite pos-
terior p(χ|Y). In the second, we adjust draws as

χ̃j = χ̂+ V −1(χj − χ̂)
� (52)

where χ̂ is the posterior mode, V = CTHC and C = M−1MA is a semidefinite square
matrix; MT

AMA =HJ−1H�MTM =H; MA and M are obtained via a singular value de-
composition.6

5Since we only need to generate the common parameters, the proposal might be slightly faster than in
the case of generating a draw for each model separately. In practice, this difference is negligible. In this
calculation, we also do not explicitly consider the cost of computing the acceptance probability in each
Metropolis step which is very fast.

6Rather than finding H and J once, prior to running the algorithm, one could perform the adjustment
adaptively, using C(φj |φj−1� y)C(φ|y) (see Ribatet, Cooley, and Davison (2012), p. 826). Because MCMC
draws are recursively centered, faster convergence is likely to occur, but at the costs of needing a numerical
optimization at each iteration.
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The adjustment works well when the composite posterior has a unique maximizer
and χ is well identified from the composite likelihood. As Canova and Sala (2009) have
shown, uniqueness and identificability may fail in a number of structural models. Al-
though identification problems may be eased with a composite approach (see, e.g.,
Canova and Matthes (2019), multiple composite posterior modes cannot be ruled out).
Thus, we recommend users to report both standard and adjusted percentiles.

4.5 Composite posterior statistics

Once composite estimates of the common parameters are available, one can proceed
with standard analysis using the “best” model as selected by the posterior ofω. Sinceωi
measures the relative misspecification of model i and since the experimental evidence
suggests thatωi has properties similar to BMA when yit = yjt , for all i,j, such an approach
is equivalent to comparing the marginal data densities, when one of the models is the
minimizer KL divergence.

Because of the instabilities present in economic data and our Bayesian philosophy,
we prefer to average the information contained in various models using posterior esti-
mates and the posterior weights. Thus, rather than choosing one model, we pool them
for inference. However, instead of using the posterior estimates based on each model
being estimated individually, we use composite posterior estimates in the exercise.

Let ỹt+l be future values of the variables appearing in all models. Let f (ỹt+l|yit�φi)
be the prediction of ỹt+l� l= 1�2� � � � in model i, givenφi and let f cl(ỹt+l|y1t � � � � � yKt�χ)=∏K
i=1 f (ỹt+l|yit�φi)ωi be a geometric pool of predictions, given yt , the K models, and the

parameters φi. Then

p(ỹt+l|y1t � � � � � yKt�ω1� � � � �ωK)

∝
∫

· · ·
∫
f cl(ỹt+l|y1t � � � � � yKt�χ)

×p(θ�η1� � � � �ηK|y1t � � � � � yKt�ω1� � � � �ωK)dθdη1 · · ·dηK
=

∫
· · ·

∫ ∏
i

p(ỹt+l�φi|yit)ωi dθdη1 · · ·dηK (53)

is the composite predictive density of ỹt+l, given the data and the weights, and p(ỹt+l�
θ�ηi|yit)ωi ≡ (f (ỹt+l|yit� θ�ηi)p(θ�η1� � � � �ηK|ω�y1t � � � � � yKt))

ωi is an “opinion” pool. In
words, the composite prediction density is obtained by taking the joint density of future
observations and of the parameters for each model, geometrically weighting them, and
integrating the resulting expression with respect to the nuisance parameters’ composite
posterior. Note that the composite predictive density is not the true predictive density
because the prediction function uses the composite prediction pool density rather than
the true prediction density; and because the composite prediction density is integrated
with respect to the composite posterior rather than the true posterior.

Depending on the investigator’s loss function, one could compute (53) using the
mode or the posterior mean of ωi. One could also integrate (53) with respect to the
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marginal of ω, but given that in many applications it makes sense to condition on es-
timated ω’s (which represent the posterior probability associated with each model), we
believe (53) has stronger appeal.

f (ỹt+l|yit�φi) is straightforward to compute for each i since the models we consider
have a linear (Gaussian) state space representation. Thus, (53) can be approximated by
first generating draws from the composite posterior, computing the predictive density
for each draw in each i, geometrically combining the predictions and, finally, averaging
across draws of (θ�η1� � � � �ηK). The problem of combining prediction densities is well
studied in the literature (see, e.g., Geweke and Amisano (2011) or Del Negro, Hasegawa,
and Schorfheide (2016)). Two approaches are typically suggested: linear pooling, which
leads to finite mixtures predictive densities such as BMA or static pools, and logarithmic
pooling, which is what a composite predictive density produces. Logarithmic pooling
generates predictive densities which are generally unimodal and less dispersed than lin-
ear pooling; and satisfy external Bayesianity, the property of being invariant to the arrival
of new information (updating the components of the composite likelihood commutes
with the pooling operator). Relative to standard pools of predictive densities, the com-
posite predictive density uses the information in all models for estimation and to com-
pute weights.7 This may lead to differences, especially when models are misspecified in
different ways and when the models feature different observables. There is an expand-
ing literature dealing with nonlinear model combinations (see, e.g., Gneiting and Ra-
jan (2010) or Billio, Casarin, Ravazzolo, and van Dijk (2013)). While such an approach is
preferable if nonlinearities are suspected to exist, the logarithmic pooling implicit in (53)
generally suffices for the purposes of reducing the misspecification of linear macroe-
conometric models.

In analogy with the prediction problem, one can compute statistics of interest by
geometrically weighting the densities of outcomes and the composite posterior for the
parameters. Take, for illustration, the computation of the responses for the subset of
variables present in all models to a shock also present in all models. Given φi, responses
to shock j for model i can be computed setting all other structural shocks to zero, which
is reasonable given that the models considered are linear and shocks are uncorrelated.
The density of outcome paths, computed randomizingφi from their posterior, is the im-
pulse response of interest. The kernel of the composite posterior responses can then be
computed analogously to (53), with the density of outcome paths replacing the predic-
tive densities.

Counterfactuals are also easy to compute. Let ȳkt+l be a selected path for the future
values in the k-th element of ỹt+l. Using f (ȳkt+l|yit� εjit+l�φi) for submodel i, one can find

the path of εjit+l consistent with the assumed ȳkt+l. With this path one can then compute

f (ȳk′t+l|yit� εjit+l�φi), for k′ 	= k. Composite counterfactuals can be computed as in (53).

7Note that the logarithmic combination formula we present can be obtained as the solution to a well-
known constrained optimization problem in information theory (see Cover and Thomas (2006)), which
leads to exponential tilting. Appendix C provides the link between the two approaches.
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4.6 Interpretations

One can think of composite posterior analysis in at least three different ways. One is
the sequential learning interpretation provided in Canova and Matthes (2019): the com-
posite posterior kernel can be obtained in K stages via an adaptive sequential learning
process, where the information contained in models whose density poorly relates to the
observables is appropriately downweighted.The prior for θ at each stage of the learning
process depends on the relative weights assigned to the current and to all previous mod-
els and on their relative fit for θ. Thus, by examining the posterior distribution at each
stage, one can identify the inferential contribution of each model for the posterior of the
common parameters, reduce the set of relevant models, if that is of interest. Further-
more, one robustifies estimates and inference since, at each stage, a change in estimates
reflect the contribution the cross-equations restrictions present in that model.

An alternative interpretation comes from noting that since the composite likeli-
hood describes an “opinion” pool, where agents/models construct their likelihood using
different pieces of information and different structures. Hence, the composite quasi-
posterior distribution we construct and the composite statistics we consider can be
interpreted as Bayesian pools of opinions, where each agent/model acts as a local
Bayesian statistician expressing an opinion in the form of a posterior distribution on the
unknown parameters, given a specific piece of information. The Bayesian pool weighs
the posterior of each agents/models, based on their posterior weights. One can also
show that the composite posterior is a “message” approximator, that is, it minimizes
the KL divergence to the probabilistic opinions: pCL = argminp

∑K
i=1ωiD(p||pi) where

pi ∝ π(ψi)L(yi|ψi) is the posterior of the parameters of model i. In words, it provides
the best possible way to extract consensus among differing agents/models; see Roche
(2016).

A final interpretation of our composite posterior estimators comes from noticing
that they are special cases of quasi-Bayesian estimators. In this literature (see, e.g., Marin
et al. (2012); Bissiri, Holmes, and Walker (2016); Scalone (2018)), one updates prior be-
liefs using a loss function which downplays some undesirable features of the likelihood.
Different loss functions can be used for different purposes. A moment-based or a zero-
one loss function are typical, because they provide estimators which reduce the incon-
sistencies of likelihood-based methods when misspecification is present. Seen through
these lenses, the composite likelihood is a moment-based loss function, weighting the
average of each model’s scores. As Grunwald and van Ommen (2017) or Baumeister
and Hamilton (2019) have noticed, a similar outcome can also be obtained by prop-
erly weighting different observations entering the likelihood. Rather than downweight-
ing the likelihood of certain observations, our approach downweights the likelihood of
models, while maintaining convexity of the composite objective function.

5. Two applications

We evaluate our framework of analysis in two applications. In the first, we show how to
robustify inference about the marginal propensity to consume (MPC) out of transitory
income. In the second, we show how to shed light on the role of technology shocks as
drivers of output fluctuations.



Quantitative Economics 12 (2021) Dealing with misspecification 339

Table 4. Posterior distribution of ρ.

Model 16th 50th 84th

BASIC 0�44 0�57 0�66
PRECAUTIONARY 0�90 0�91 0�91
RBC 0�41 0�52 0�63
ROT 0�46 0�56 0�65
LIQUIDITY 0�70 0�77 0�84
Unadjusted composite 0�85 0�90 0�96
Adjusted composite 0�80 0�87 0�95
Composite (without RBC) 0�80 0�85 0�91

5.1 Measuring the marginal propensity to consume

We consider five models commonly used in the literature to explain the dynamics of the
MPC: the first is a standard permanent income specification; the others add aspects left
out of the workhorse model. In the baseline model, there is a representative agent with
quadratic preferences, the real rate of interest is assumed to be constant, (1 + r)β = 1,
income is exogeneous and features permanent and transitory components. The second
model has similar features but preferences are exponential (in the spirit of Caballero
(1990)). Because the variance of income shocks affects consumption decisions, precau-
tionary savings matter and consumption is no longer a random walk. To make the model
empirically interesting, we allow the volatility of the two income components to be time
dependent and assume a simple AR(1) for the log of the variance. In the third model, we
make the real rate endogenous by considering a real business cycle structure featuring
consumption-leisure choices, production requiring capital and labor, and a technolog-
ical disturbance with transitory and permanent components. The representative agent
has separable CRRA preferences. The fourth specification introduces agent heterogene-
ity: a fourth of the agents consume all of their current income, as in Gali, Lopez Salido,
and Valles (2004). Preferences and constraints for the optimizing agents are as in the
basic specification. The last model also has two types of agents, but one is liquidity con-
strained (in the spirit of Chah et al. (1995)). This model retains exogenous income, a
constant real rate equal to the inverse of the rate of time preference of the non-liquidity
constrained agent but features a nonseparable utility in nondurable and durable con-
sumption goods (depreciating at the rate δ). Furthermore, constrained agents must fi-
nance a fraction of nondurable expenditure with accumulated assets. We make the liq-
uidity constraint binding in the steady state by assuming that constrained agents are
more impatient. We name the models: BASIC, PRECAUTIONARY, RBC, ROT, LIQUID-
ITY, respectively; their log-linearized conditions are in Appendix D.

Although models feature different endogenous variables, we use aggregate real per-
capita non-durable consumption (FRED name: A796RX0Q048SBEA), real per-capita in-
come, (FRED name: A067RO1Q156NBEA) and real per-capita value of assets (Household
and nonprofit organization total financial assets, FRED name: TFAABSHNO) as observ-
ables in estimation for all specifications—in the RBC model we equate real per-capita
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assets with per-capita capital of the representative agent. This choice of observables al-
lows us to compare composite and BMA ranking of models and predictions. The sample
size is 1980:1–2017:2 and all variables are quadratically detrended. Estimation is per-
formed with MCMC techniques using the likelihood of each model or the composite
likelihood. In the latter case, we restrict the persistence of the transitory income process
ρ, which as seen in Section 2, matters for the MPCyT , to be common across specifica-
tions. The prior forωi, i= 1� � � � �5, is Dirichlet with mean equal to 0�20. The priors for all
other parameters are proper but loose and truncated, when needed, to the region with
economic interpretation.

Table 4 summarizes of the posterior features of ρ. The first five rows display sin-
gle model percentiles; the sixth and seventh rows composite percentiles (unadjusted
and adjusted). Although Cogley and Nason (1995) showed that income persistence in a
RBC model is largely driven by TFP persistence, one may argue that TFP and exogenous
income persistence are parameters with different economic interpretations. Thus, the
eight row of Table 4 presents composite percentiles when ρ is restricted to be common
only across models featuring exogenous income.

For BASIC, ROT, and RBC models the median estimate is around 0�55 and the enve-
lope of the 68 percent posterior ranges is [0�40–0�65]; for the model with liquidity con-
straint the median estimate is 0�77 and significantly different from those of the first three
models. Finally, in a model with precautionary motive, transitory income is highly per-
sistent and very precisely estimated. The composite posterior estimate is also high: its
median value (0�90) is close to the one obtain in the precautionary model (0�91), but the
posterior range is larger, reflecting the heterogeneity of single model estimates. Elimi-
nating the RBC model from the composite estimation leaves the posterior percentiles of
ρ practically unchanged.

Why is the composite posterior median of ρ high? Figure 1, which presents the prior
and the posterior of ωi, shows that the precautionary model receives the highest weight
in the composite pool. Thus, the fact that real rate is constant, that labor supply deci-
sion and heterogeneities are disregarded are less crucial when characterizing the MPC
than leaving precautionary motives out. Since the weights are stable over time (esti-
mates available on request), income uncertainty is not a dominant factor only in the
post 2008 part of the sample.

Figure 2 presents dynamic estimates of MPCyT , computed cumulating over hori-

zons consumption and output responses to transitory shocks, that is, MPCTy (l) =∑l
j=1 ct+j |eTt∑l
j=1 yt+j |eTt

� l = 1�2� � � � � where ct+j(yt+j) is the response of real per-capita consumption

(transitory income) at t + j, eTt is a transitory income shock, and l the horizon. In in-
dividual models, when ρ is estimated to be low, the profile of MPCyT is also low and,
consistent with the discussion of Section 2, the instantaneous posterior estimates of
MPCyT obtained with BASIC, RBC, and LIQUIDITY models are only around 0�05. Esti-
mates increase somewhat at longer horizons but after 2 years the 68 percent range is
still below 0�10. The instantaneous MPC is slightly higher in the ROT model (the median
value is 0�25). Still, after 2 years the representative agent cumulatively consumes only
30 percent of the cumulative transitory income. With the PRECAUTIONARY model, the
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Figure 1. Prior and posterior for ω.

instantaneous posterior estimate of MPCTy is also higher. However, also with this specifi-
cation, less than 25% of cumulatively transitory income is cumulatively consumed after
2 years. Hence, no matter what model one employs, MPC estimates suggest that at most
30% of cumulative income is cumulatively consumed at the 2 years horizon.

Figure 2. Likelihood and composite likelihood estimates of MPCyT .
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Figure 3. Composite, BMA and naive posterior estimates of the MPC.

When the composite posterior estimate of ρ is employed, the instantaneous value of
MPCTy generally increases but, with the exception of the ROT model, MPCyT estimates
are still below 30 percent at the 2 years horizon. Thus, even when income is relatively
persistent, rational consumers save the majority of their transitory income. Perhaps
more interesting from our point of view is the fact that, when composite estimates of ρ
are used, cross model differences in MPCyT estimates decrease considerably. For exam-
ple, the time profile of MPC estimates in PRECAUTIONARY and RBC models (the models
with the highest and the lowest median estimate of ω) are very similar and differences
previously noted decrease substantially.

Rather than plugging composite posterior estimates in a model, one may choose
to robustify inference by computing a composite MPCTy estimate, weighting the MPCyT
of each model by the posterior ωi. Figure 3 presents such a measure together with two
other standard combinations: one constructed using BMA weights and one using naive,
equal weights.

Composite and BMA estimates of MPCyT are similar, given that BMA puts all pos-
terior weight on the PRECAUTIONARY model. Since posterior standard errors are also
similar, the two measures give similar conclusions about the propensity to consume of
US agents. The naive combination, instead, produces MPCTy estimates which are almost
twice as large for the first 2 years, because the ROT model gets a much larger weight than
in the other two combinations.

It is instructive to compute the average Kullback–Leibler (KL) divergence for de-
trended real per-capita output to have a further sense of the misspecification of the
various models we entertain. Recall that whileωmedian estimates provide a small sam-
ple measure of relative misspecification, KL estimates are absolute measures and valid
only in large samples. The PRECAUTIONARY model turns out to be the closest to the
DGP (KL Divergence = 0�0041) also according to this metric, and the other four models
all feature KL divergence exceed 0�030. The composite model’s KL divergence is larger
than for the PRECAUTIONARY model (0�009), but substantially smaller than standard
ad hoc specifications. To illustrate, we consider introduces habits in consumption and a
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random disturbance to the budget constraint of consumers. In addition, measurement
errors are added to all observables in estimation as this error drives a wedge between
model implications and the dynamics of observable variables. The log-linearized con-
ditions of this ad hoc model are in Appendix D. The KL divergence of the this habit per-
sistence model is 0�323.

One may wonder whether the PRECAUTIONARY or the composite model should be
employed for inference, given that the former is best in the KL metric. Our results in-
dicate that once composite posterior estimates of ρ are used, MPC differences across
models wash out. Thus, a good estimate of ρ is more important for thinking about MPC
than the exact features a model displays. Nevertheless, one may worry about robustness
to potential model switches and structural breaks. When this is a concern, composite
posterior estimates of the MPC should be preferred.

In sum, our approach seems successful in many dimensions: it gives high posterior
weight to the model with the lowest KL divergence; it reduces differences in MPC esti-
mates across potentially misspecified models, making policy decisions less uncertain.
Furthermore, composite inferences is close to BMA inference, despite the fact that the
latter assumes that one of the models in the pool is the true one, and features lower KL
divergence than an alternative ad hoc specification.

5.2 The role of technology shocks for output fluctuations

The importance of technology shocks in accounting output fluctuations has been dis-
cussed for over 35 years with contrasting conclusions (see, e.g., Kydland and Prescott
(1982) or Gali (1999)). Differences in the conclusions are due, in part, to specification
choices and, in part, to the sample used. In general, larger models featuring dynamic
evolution for the capital stock find a smaller role than smaller models featuring no or
constant capital.

To show how a composite approach can shed light on the role of technology shocks,
we first estimate the medium scale New Keynesian (NK) model of Justiniano, Primicieri,
and Tambalotti (2010) (JPT henceforth) using post-1984 US data. We then pair it with
the small NK model without capital of Herbst and Schorfheide (2015) (HS henceforth)
and jointly estimate two models by composite methods, restricting the slope of the New
Keynesian Phillips curve κ and the persistence of the stationary TFP shock ρz to be com-
mon. Clearly, there are other parameters which are common and could be restricted
(e.g., Taylor rule coefficients). We chose to constrain only a few parameters to be com-
mon to highlight the stark differences obtained when estimating the JPT model in iso-
lation or jointly with the HS model. The optimality conditions of the two models are
in Appendix E. Note that both models feature permanent and transitory technological
disturbances; and we can approximate a RBC framework through prior parameter re-
strictions in the HS model. Thus, one can also think of our exercise as combining NK
and RBC frameworks without having to worry about the poor fit that RBC models have
for nominal variables.

We estimate the weights assuming that the two models are a priori equally likely.
Since we use different observable variables in estimation (output, inflation, and the
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Figure 4. Fraction of output fluctuations due to TFP shocks, JPT model.

nominal rate for the HS model; output, inflation, the nominal rate, consumption, in-
vestment, hours, and real wages for the JPT model), no comparison with BMA is possi-
ble. When the JPT model is estimated in isolation, estimates of κ and ρz are low (poste-
rior means 0�02 and 0�14, standard deviations 0�0001 and 0�0041, resp.). The mean esti-
mates are close to the point estimates reported by JPT (0�10 and 0�24).8 The quantitative
differences are due to a different estimation sample. The posterior estimates obtained
imply that technology shocks explain 30–40% of output fluctuations at typical business
cycle horizons of 8–32 quarters (see Figure 4). Mean estimates increase to κ = 0�22 and
ρz = 0�93 when composite methods are used (standard deviations are 0�0023 and 0�0002,
resp.). With composite posterior estimates technology shocks become the major source
of output fluctuations at horizons greater than 1 year.

How does one interpret these findings? First, notice that the HS model receives a
posteriori higher weight (mean estimate for ω is 0�63 and standard deviation 0�0003).
Second, in the HS model technology shocks enter only the Euler equation, while in the
JPT model they affect several equations. Thus, when the latter is estimated in isolation,
technology shocks must propagate in a way that helps to fit well the dynamics of a num-
ber of endogenous variables. If the JPT model is misspecified, in particular, in equa-
tions other than the Euler equation, pairing it with the HS model relaxes incorrect cross
equations restrictions the model imposes. Because the JPT model has been designed to
give monetary shocks their best chance to explain output and inflation fluctuations, it
is likely that the mechanics of transmission of other shocks are misspecified. The fact
that the HS model has a higher ω estimate and that potentially incorrect cross equation
restrictions are relaxed imply that posterior estimation in the JPT model moves to a re-
gion of the parameter space where nominal rigidities are smaller (the price stickiness
mean estimate drops from 0�66 to 0�47), real rigidities are larger (the investment adjust-
ment cost parameter mean estimate increases from 1�54 to 2�57) and demand shocks
less persistent (the mean value of the persistence of preference shocks drops from 0�76

8The value of κ is obtained using estimates of the parameters they report.
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to 0�23), all of which make technology disturbances more important for output fluctua-
tions. These conclusions remain valid when HS is restricted to mimic a RBC model.

To know whether composite inference should be trusted, we compute the KL diver-
gence for output and inflation for the JPT model (using posterior estimates) and the
composite pool. Because misspecification is roughly the same (average KL is 0�025 for
the composite model and 0�021 for the JPT model), our results indicate the JPT model
possesses multiple posterior modes featuring different mechanics of structural trans-
mission but similar KL divergence.

Clearly, additional work is needed to more comprehensively explore the posterior
of the JPT model but our evidence warns about dismissing technology shocks as major
sources of output fluctuations in medium scale New Keynesian models.

6. Conclusions and implications for practice

This paper proposes a new approach to deal with the inherent misspecification of the
current generation of DSGE models. We consider a set of potentially misspecified mod-
els, geometrically combine their likelihood functions, and perform posterior estimation
using the composite likelihood. The composite likelihood shrinks individual likelihood
estimates of the common parameters toward a weighted average of all other models’ es-
timates, while leaving untouched estimates of idiosyncratic parameters. Thus, compos-
ite estimation guards against misspecification by requiring estimates of the common
parameters to be consistent with the structure present in all models. We highlight the
properties of our approach and relate it to existing methodologies.

We describe a MCMC approach to draw sequences from the composite posterior
distribution, show how to adjust the MCMC percentiles to produce posterior credible
sets with the right asymptotic coverage, highlight how to construct composite poste-
rior statistics, such as impulse responses or counterfactuals, and discuss how posterior
weights inform us about the relative misspecification of the models entering the pool.

We use the methodology to estimate the marginal propensity to consume out of
transitory income, and to evaluate of the role of technology shocks for output fluctu-
ations. MPC estimates are generally low when models are estimated separately but sig-
nificantly increase when models are jointly estimated. Composite posterior and BMA
MPC estimates are similar and lower than a naive combination of individual MPC esti-
mates. Furthermore, the composite model is closer to the process generating the data
than a standard ad-hoc model with habit in consumption. Technology shocks explain
about one-third of output fluctuations in a standard medium scale NK model but their
importance increases when such a model is paired with a less restricted and smaller
scale model without capital.

We conclude with some practical suggestions to potential users and highlight a few
issues which need be developed in future research. First, to make the approach mean-
ingful the models entering the composite likelihood should capture different aspects
disregarded (or misrepresented) in the baseline specification. Gains from composite es-
timators depend on a careful selection of models entering the pool. Second, when a re-
searcher perceives that the models are economically incompatible, making parameters
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with the same name different economic objects, the composite likelihood can still be
employed since if θ = ∅, the approach produces likelihood estimates, model by model.
Third, while the methodology has the potential to reduce misspecification and to im-
prove inference, given existing models, it is not a substitute for having better models.
Section 5 shows how it can be used to gauge which missing features should be included
in a benchmark model, and how conclusions could be altered when estimation is re-
stricted in a meaningful way. Fourth, apart from misspecification issues, the approach
has a number of other benefits relative to likelihood-based estimation of the structural
parameters (see Canova and Matthes (2019)). For example, when a large scale model is
available, the composite likelihood constructed using blocks of equations has shape and
properties which are similar to those of the likelihood of the full model, without the nu-
merical difficulties. Thus, the approach is not only useful to examine in which direction
a model should be improved. It also provides a way to estimate the larger scale mod-
els one is likely to build after the initial experimentation. Fifth, although we focus on
linearized models, one can also combine the likelihoods of models perturbed at higher
order. We expect the gains to remain also in these more complicated frameworks. Fi-
nally, by treating data subsamples as different models that are combined for inference
via the composite likelihood, the approach is suited to deal with structural time varying
coefficients models, which are complicated to interpret with standard likelihood-based
technology; see, for example, Canova, Ferroni, and Matthes (2020).

One question that needs careful attention is one of overfitting. Standard models
with ad hoc additions may lead to overfitting, making their out-of-sample performance
poor. One relevant question is whether our approach faces a similar problem. While we
have not performed out-of-sample checks, the literature on model combination sug-
gests that it is unlikely to be the case because shrinkage estimates give superior perfor-
mance to standard estimates; and model combinations dominate single model forecasts
in the presence of even mild instabilities in the data generating process; see, for exam-
ple, Aiolfi, Capistran, and Timmerman (2010). We plan to investigate the issue in future
work.
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