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Appendix A: Overidentification and efficiency

In the main text, we focus on just-identified moment restrictions with dZ = dD, for
which the construction of an estimator is straightforward. If the model is overidentified
(i.e., if dZ > dD), instead of the original moment conditions,

EP

[(
1
{
Y ≤X ′θ1(τ)+D1θ2(τ)+ · · · +DdDθJ(τ)

}− τ)
(
X

Z

)]
= 0�

we may use a set of just-identified moment conditions

EP

[(
1
{
Y ≤X ′θ1(τ)+D1θ2(τ)+ · · · +DdDθJ(τ)

}− τ)
(
X

Z̃

)]
= 0� (A.1)

where Z̃ is a dD×1 vector of transformations of (X�Z). A practical choice is to construct
Z̃ using a least squares projection ofD on Z andX (Chernozhukov and Hansen (2006)).

To achieve pointwise (in τ) efficiency, we can employ the following two-step proce-
dure which is based on Remark 5 in Chernozhukov and Hansen (2006):
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Step 1: We first obtain an initial consistent estimate of θ∗ using one of our estima-
tors based on a set of just-identified moment conditions such as (A.1). We then use
nonparametric estimators to estimate the conditional densities V (τ)= fε(τ)|X�Z(0) and
v(τ)= fε(τ)|D�X�Z(0), where ε(τ)= Y −X ′θ∗

1(τ)−D1θ
∗
2(τ)−· · ·−DdDθ∗

J(τ), and the con-
ditional expectation function EP [Dv(τ) |X�Z].

Step 2: We apply our procedure to obtain a solution to the following moment condi-
tions:

EP

[(
1
{
Y ≤X ′θ1(τ)+D1θ2(τ)+ · · · +DdDθJ(τ)

}− τ)
(

V (τ)X

EP
[
Dv(τ) |X�Z]

)]
= 0� (A.2)

Consider players j = 1� � � � � J solving the following optimization problems:

min
θ̃1∈RdX

QP�1(θ̃1� θ−1)� (A.3)

min
θ̃j∈R

QP�j(θ̃j� θ−j)� j = 2� � � � � J� (A.4)

where

QP�1
(
θ(τ)

) := EP
[
ρτ
(
Y −X ′θ1(τ)−D1θ2(τ)− · · · −DdDθJ(τ)

)
V (τ)

]
�

QP�j
(
θ(τ)

) := EP

[
ρτ
(
Y −X ′θ1(τ)−D1θ2(τ)− · · · −DdDθJ(τ)

)EP[Dv(τ) |X�Z]
j−1

Dj−1

]
�

j = 2� � � � � J�

and EP [Dv(τ) |X�Z]j−1 is the jth element of EP [Dv(τ) |X�Z]. For each j, the BR func-
tion Lj(θ−j(τ)), defined as a member of the set of minimizers of QP�j(·� θ−j), solves a
suitable subset of the moment conditions in (A.2). The optimization problems in (A.3)–
(A.4) are convex population QR problems provided that the model is parametrized such
that EP [Dv(τ) |X�Z]j−1/Dj−1, j = 2� � � � � J, is positive. Estimation can then proceed by
replacing the population QR problems by their sample analogues and applying one
of the estimation algorithms discussed in the main text. By Corollary 2, the resulting
estimator is asymptotically equivalent to a GMM estimator that uses the optimal in-
strumental variables and thus achieves pointwise (in τ) efficiency (e.g., Chamberlain
(1987)).26

Appendix B: Reparametrization

In the main text, we assume that the model is reparametrized such that Z�/D� is pos-
itive for all � = 1� � � � � dD. This ensures that the weights are well-defined and that the
weighted QR problems are convex. However, in empirical applications, the weights may
not be well-defined (e.g., ifD� is an indicator variable with P(D� = 0) > 0) or negative in

26Corollary 2 can be applied to the current setting by replacing the original set of covariates and in-
struments Ψ(τ) = (X ′�Z′)′ in (6.6) with the optimal instrumental variables Ψ(τ) = (V (τ)′�EP [D1v(τ) |
X�Z]/D1� � � � �EP [DdDv(τ) |X�Z]/DdD)′.
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some instances. Assuming that Z� is positive, a simple way to reparametrize the model
is to add a large enough constant c toD�.27 This transformation is theoretically justified
by the compactness of the support of D� (Assumption 2(2)). To fix ideas, suppose that
one is interested in estimating the following linear-in-parameters model with a single
endogenous variable:

q(D�X�τ)= θ11 + X̃ ′θ12 +Dθ2�

where θ1 = (θ11� θ
′
12)

′ and X = (1� X̃ ′)′. Suppose further that the support of D is a com-
pact interval, [dmin� dmax] ⊂ R, with dmin < 0. In this case, we can apply the transforma-
tionD
 =D+ c, where c > |dmin|. The transformed model reads

q(D�X�τ)= θ
11 + X̃ ′θ12 +D
θ2�

where θ
11 = θ11 − cθ2. Importantly, one can always back out the original parameters,
θ= (θ11� θ

′
12� θ2)

′, from the parameters in the reparametrized model, θ
 = (θ
11� θ
′
12� θ2)

′.

Appendix C: Decentralization

C.1 The domains ofMj-maps

Recall that, in (3.6), we defined the set

R̃1 := {
θ−1 ∈Θ−1 :ΨP�1(θ1� θ−1)= 0�

ΨP�2(θ1� θ2�π−{1�2}θ−1)= 0�∃(θ1� θ2) ∈Θ1 ×Θ2
}
�

Similarly, for k= 2� � � � � dD − 1, define

R̃k :=
{
θ−1 ∈Θ−1 :ΨP�1(θ1� θ−1)= 0�

ΨP�2(θ1� θ2�π−{1�2}θ−1)= 0�

���

ΨP�k(θ1� � � � � θk�π−{1�����k}θ−1)= 0�∃(θ1� � � � � θk) ∈
k∏
j=1

Θj

}
�

For k= dD, let

R̃dD :=
{
θ−1 ∈Θ−1 :ΨP�1(θ1� θ−1)= 0�

ΨP�2(θ1� θ2�π−{1�2}θ−1)= 0�

27Since the IVQR model is characterized by conditional moments (as in (2.1)), one may choose transfor-
mations of instruments to generate unconditional moment conditions. In case Z� is not positive a.s., one
can use a positive transformation (e.g., a logistic function) of Z� instead of Z� itself. The decentralization
and identification results then hold with the transformed instruments as long as they satisfy our assump-
tions.
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���

ΨP�J(θ1� � � � � θJ)= 0�∃(θ1� � � � � θJ) ∈
J∏
j=1

Θj

}
�

For each k, the mapMk is well-defined on R̃k. Note also that R̃dD ⊂ R̃j for all j ≤ dD.

C.2 Local decentralization and local contractions

We say that an estimation problem admits local decentralization if the BR functions Lj ,
j = 1� � � � � J, and the maps K and M are well-defined over a local neighborhood of θ∗.
The following weak conditions are sufficient for local decentralization of the IVQR esti-
mation problem.

Assumption 4. The following conditions hold:

(1) The conditional cdf y �→ FY |D�X�Z(y) is continuously differentiable at y∗ = d′θ∗
−1 +

x′θ∗
1 for almost all (d�x� z). The conditional density fY |D�Z�X is bounded on a neigh-

borhood of y∗ a.s.;

(2) The matrices

EP
[
fY |D�X�Z

(
D′θ∗

−1 +X ′θ∗
1
)
XX ′]

and

EP
[
fY |D�X�Z

(
D′θ∗

−1 +X ′θ∗
1
)
D�Z�

]
� �= 1� � � � � dD�

are positive definite.

Assumption 4 is weaker than Assumption 2(3)–2(4) as it only requires the conditions,
for example, continuous differentiability of the conditional CDF, at a particular point, for
example, y∗. Under this condition, we can study the local properties of our population
algorithms. For this, the following lemma ensures that the BR maps are well-defined
locally.

Lemma 3. Suppose that Assumptions 1, 2(1)–2(2), and 4 hold. Then there exist open
neighborhoods NL−j , j = 1� � � � � J, NK , NM of θ∗

−j , θ
∗, and θ∗

−1 such that:

(i) There exist maps Lj : N−j →R
dj , j = 1� � � � � J such that, for j = 1� � � � � J,

ΨP�j
(
Lj(θ−j)� θ−j

)= 0� for all θ−j ∈ N−j�

Further, Lj is continuously differentiable for all j = 1� � � � � J.

(ii) The mapsK : NK →R
dX+dD andM : NM →R

dD are continuously differentiable.
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Proof. (i) The proof is similar to that of Lemma 1 (see Appendix E). Therefore, we
sketch the argument below for j = 1. By Assumptions 2(2) and 4(1), ΨP�1 is contin-
uously differentiable on a neighborhood V of θ∗. By Assumption 4(2) and the con-
tinuity of det(∂ΨP�1(θ)/∂θ′

1), one may choose V so that det(∂ΨP�1(θ)/∂θ′
1) 
= 0 for all

θ= (θ1� θ−1) ∈ V . By the implicit function theorem, there is a continuously differentiable
function L1 and an open set N−1 containing θ−1 such that

ΨP�1
(
L1(θ−1)�θ−1

)= 0� for all θ−1 ∈ N−1�

The arguments for Lj , j 
= 1 are similar.
(ii) Let NK = {θ ∈ Θ : π−jθ ∈ N−j� j = 1� � � � � J} and let NM be defined by mimicking

(3.6), while replacing Θj with Nj in the definition of R̃j for j = 1� � � � � J. The continuous
differentiability ofK andM follows from that of Lj , j = 1� � � � � J.

C.2.1 Local contractions Recall that ρ(A) denotes the spectral radius of a square ma-
trixA. The following assumption ensures thatK andM are local contractions.

Assumption 5.

(1) ρ(JK(θ∗)) < 1;

(2) ρ(JM(θ∗
−1)) < 1.

Here, we illustrate a primitive condition for Assumption 5. Consider a simple setup
without covariates (i.e., X = 1), a binary D, and a binary Z. We only analyze Assump-
tion 5(1). A similar result can be derived for Assumption 5(2). In this setting, the Jacobian
ofK evaluated at θ∗ is given by

JK
(
θ∗)=

⎛
⎜⎜⎜⎝

0 −EP
[
fY |D�Z

(
Dθ∗

2 + θ∗
1
)
D
]

EP
[
fY |D�Z

(
Dθ∗

2 + θ∗
1
)]

− EP
[
fY |D�Z

(
Dθ∗

2 + θ∗
1
)
Z
]

EP
[
fY |D�Z

(
Dθ∗

2 + θ∗
1
)
ZD

] 0

⎞
⎟⎟⎟⎠ �

The characteristic polynomial is then given by

pK(λ)= λ2 − EP
[
fY |D�Z

(
Dθ∗

2 + θ∗
1
)
D
]

EP
[
fY |D�Z

(
Dθ∗

2 + θ∗
1
)] EP

[
fY |D�Z

(
Dθ∗

2 + θ∗
1
)
Z
]

EP
[
fY |D�Z

(
Dθ∗

2 + θ∗
1
)
ZD

] �
Hence, Assumption 3(1) holds if all eigenvalues (i.e., the roots λK of pK(λ) = 0) have
modulus less than one, which holds when∣∣∣∣EP

[
fY |D�Z

(
Dθ∗

2 + θ∗
1
)
D
]

EP
[
fY |D�Z

(
Dθ∗

2 + θ∗
1
)] EP

[
fY |D�Z

(
Dθ∗

2 + θ∗
1
)
Z
]

EP
[
fY |D�Z

(
Dθ∗

2 + θ∗
1
)
ZD

] ∣∣∣∣< 1�

This condition can be simplified to

fY |0�1
(
θ∗

1
)
p(0|1)fY |1�0

(
θ∗

2 + θ∗
1
)
p(1|0) < fY |1�1

(
θ∗

2 + θ∗
1
)
p(1|1)fY |0�0

(
θ∗

1
)
p(0|0)� (C.1)
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where fY |d�z(y) := fY |D=d�Z=z(y) andp(d|z) := P(D= d |Z = z). It is instructive to inter-
pret condition (C.1) under the local average treatment effects framework of Imbens and
Angrist (1994). Specifically, condition (C.1) holds if (i) their monotonicity assumption
is such that there are compliers but no defiers and (ii) the complier potential outcome
density functions are strictly positive. Conversely, the condition is violated if there are
defiers but no compliers.

Under the local contraction conditions in Assumption 5, we have the following re-
sults.

Proposition 3. Suppose that Assumptions 1, 2(1), 2(2), and 4 hold.

(i) Suppose further that Assumption 5(1) holds. Then there exists a closed neighbor-
hood N̄K of θ∗ such thatK(N̄K)⊂ N̄K andK is a contraction on N̄K with respect to
an adapted norm.

(ii) Suppose further that Assumption 5(2) holds. Then there exists a closed neighbor-
hood N̄M of θ∗

2 such thatM(N̄M)⊂ N̄M andM is a contraction on N̄M with respect
to an adapted norm.

Proof. We only prove the result for K, the proof for M is similar. By Lemma 3, Lj is
continuously differentiable at θ∗. Note that JK is given by

JK(θ)=

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

0
∂L1(θ−1)

∂θ′
2

� � � � � �
∂L1(θ−1)

∂θ′
J

∂L2(θ−2)

∂θ′
1

0
∂L2(θ−2)

∂θ′
3

� � �
∂L2(θ−2)

∂θ′
J

���
���

���
���

���
∂LJ(θ−J)
∂θ′

1
· · · · · · ∂LJ(θ−J)

∂θ′
J−1

0

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦
�

which is continuous at θ∗. The desired result now follows, for instance, from Proposi-
tion 2.2.19 in Hasselblatt and Katok (2003).

C.3 Nested algorithms: Existence and uniqueness of fixed points in subgames

Here, we discuss two different sets of conditions which ensure that the nested fixed-
point algorithms in Section 4.3 are well-defined. Specifically, we present conditions for
the existence and uniqueness of fixed points in the subgames. Section C.3.1 considers
contraction-based identification conditions. In Section C.3.2, we briefly discuss global
identification conditions. To illustrate, we consider the case with three players (J = 3).

C.3.1 Contraction-based identification Suppose that Assumptions 1–3 hold. Consider
a subgame formed by players 1 and 2 given some θ̃3. We assume that θ̃3 is chosen so
that DM1�2|3 (defined below) is nonempty. Let the moment conditions for the subgame be
defined as

ΨP�1(θ1� θ2) :=ΨP�1(θ1� θ2� θ̃3)=EP
[(

1
{
Y ≤X ′θ1 +D1θ2 +D2θ̃3

}− τ)X]�
ΨP�2(θ1� θ2) :=ΨP�2(θ1� θ2� θ̃3)=EP

[(
1
{
Y ≤X ′θ1 +D1θ2 +D2θ̃3

}− τ)Z1
]
�
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Note that ΨP�1 and ΨP�2 and other objects below depend on θ̃3. We will often suppress
this dependence to alleviate the notation. Moreover, define

R1 := {
θ1 ∈Θ1 :ΨP�2(θ1� θ2)= 0� for some θ2 ∈Θ2

}
�

R2 := {
θ2 ∈Θ2 :ΨP�1(θ1� θ2)= 0� for some θ1 ∈Θ1

}
�

Assumptions 1–2 and Lemma 1 guarantee that BR functions L1 and L2, where

ΨP�1
(
L1(θ2)�θ2

)= 0� for all θ2 ∈ R2�

ΨP�2
(
θ1�L2(θ1)

)= 0� for all θ1 ∈ R1�

are well-defined. TheM map for the subsystem is

M1�2|3(θ2 | θ̃3)= L2
(
L1(θ2)

)
�

This map exists and is well-defined on

DM1�2|3 := {
θ2 ∈Θ2 :ΨP�1(θ1� θ2)= 0�ΨP�2(θ1� θ̃2)= 0�

for some (θ1� θ̃2) ∈Θ1 ×Θ2� (θ2� θ̃3) ∈ D̃M
}
�

Note that, by Assumption 3, for any (θ2� θ3) ∈ D̃M ,

∥∥JM(θ2� θ3)
∥∥≤ λ < 1�

Given these definitions, we can now investigate the subsystem. Observe that the
derivative JM1�2|3(θ2) of M1�2|3 with respect to θ2 is a component of JM . In particular, for
any (θ2� θ3), JM may be written as

JM(θ2� θ3)=
⎡
⎢⎣
∂M1(θ2� θ3)

∂θ2

∂M1(θ2� θ3)

∂θ3
∂M2(θ2� θ3)

∂θ2

∂M2(θ2� θ3)

∂θ3

⎤
⎥⎦=

⎡
⎢⎣ JM1�2|3(θ2)

∂M1(θ2� θ3)

∂θ3
∂M2(θ2� θ3)

∂θ2

∂M2(θ2� θ3)

∂θ3

⎤
⎥⎦ �

Let V12 := {x ∈R
2 : x= (x1�0)′�x1 ∈R}. Then, by the definition of the operator norm (see,

e.g., Bhatia (1997)),

∥∥JM(θ2� θ3)
∥∥ := sup

x�y∈R2:‖x‖=‖y‖=1

∣∣x′JM(θ2� θ3)y
∣∣

≥ sup
x�y∈V12:‖x‖=‖y‖=1

∣∣x′JM(θ2� θ2)y
∣∣

= sup
‖x1‖=‖y1‖=1

∣∣x′
1JM1�2|3(θ2)y1

∣∣= ∥∥JM1�2|3(θ2)
∥∥�

Hence, it follows that

∥∥JM1�2|3(θ2)
∥∥≤ ∥∥JM(θ2� θ̃3)

∥∥≤ λ < 1� for all θ2 ∈ DK1�2|3�
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which is an analog of Assumption 3 for the subgame. Then Proposition 2 ensures the
existence and uniqueness of the fixed point in the subgame. In this section, we focused
on identification conditions based on the dynamical system M . Similar arguments can
be used to establish identification based on the dynamical systemK.

C.3.2 Global identification conditions To ensure the existence and uniqueness of the
fixed point in the subgame, we can alternatively rely on the existing global identifi-
cation conditions in Chernozhukov and Hansen (2006) (cf. Section 4.2 and Lemma 2)
and Proposition 1. For every value θ̃3 ∈Θ3, this requires analogues of the conditions in
Lemma 2 to hold for the subgame between players 1 and 2.

Appendix D: Additional simulation results

D.1 Bias and RMSE application-based DGP

Here, we report simulation evidence on the finite sample bias and RMSE of the different
IVQR estimators based on the application-based DGPs in Section 8. Tables 5–6 present
the results. We find that all the proposed algorithms perform well and exhibit compa-
rable bias and RMSE properties. In particular, the finite sample performances of our
preferred estimators are comparable to IQR and the profiling estimator, which shows
that their computational advantages do not come at a cost in terms of the finite sample
performance.

D.2 Three endogenous variables

Here, we present additional simulation evidence with three endogenous variables. We
consider the application-based DGP of Section 8, augmented with an additional en-
dogenous variable:

Yi =X ′
iθX(Ui)+DiθD(Ui)+D2�iθD�2(Ui)+D3�iθD�3(Ui)+G−1(Ui)�

where θD�3(Ui)= 10,000, D3�i = 0�8 ·Z3�i + 0�2 ·�−1(Ui), and Z3�i ∼N(0�1). We only re-
port the results based on the contraction algorithm and the nested fixed-point algo-

Table 5. Bias and RMSE, 401(k) DGP with one endogenous regressor.

Bias/102 RMSE/103

τ Contr Brent Profil InvQR Contr Brent Profil InvQR

0�15 −4�43 −6�84 −6�71 −7�26 7�58 7�71 7�64 7�87
0�25 −0�28 −1�86 −1�90 −1�67 4�04 4�10 4�11 4�10
0�50 −1�04 −1�46 −1�49 −1�23 2�06 2�07 2�07 2�08
0�75 −1�60 −1�31 −1�48 −1�14 1�85 1�85 1�86 1�85
0�85 0�61 1�17 0�85 1�24 2�06 2�07 2�07 2�08

Note: Monte Carlo simulation with 500 repetitions as described in the main text. Contr: contraction algorithm; Brent: root-
finding algorithm based on Brent’s method; Profil: profiling estimator based on Brent’s method; InvQR: inverse quantile regres-
sion. We use 2SLS estimates as starting values.
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Table 6. Bias and RMSE, 401(k) DGP with two endogenous regressors.

Bias/102 RMSE/103

τ Contr NestBr SimAnn Profil InvQR Contr NestBr SimAnn Profil InvQR

Coefficient on binary endogenous variable

0�15 −4�81 −2�73 3�77 −3�65 −7�77 8�29 7�84 6�74 7�95 8�60
0�25 −3�47 −3�75 −3�17 −3�83 −3�42 4�32 4�31 4�25 4�31 4�32
0�50 0�84 0�56 0�68 0�71 0�74 1�93 1�95 1�95 1�95 1�98
0�75 −0�56 −0�33 −0�37 −0�57 −0�25 1�75 1�74 1�74 1�74 1�78
0�85 −1�03 −0�72 −0�74 −1�28 −0�61 2�18 2�19 2�20 2�19 2�22

Coefficient on continuous endogenous variable

0�15 2�00 0�48 4�72 −0�03 0�23 1�07 1�07 2�20 1�07 1�19
0�25 1�72 −0�09 0�25 −0�48 −0�10 1�00 1�02 1�13 1�03 1�13
0�50 0�75 −0�47 −0�45 −0�54 −0�68 0�89 0�97 0�97 0�97 1�11
0�75 −1�43 −0�49 −0�44 −1�57 −0�15 0�99 1�10 1�11 1�12 1�24
0�85 −2�66 −0�89 −0�91 −2�60 −0�40 1�12 1�27 1�27 1�28 1�32

Note: Monte Carlo simulation with 500 repetitions as described in the main text. Contr: contraction algorithm; NestBr:
nested algorithm based Brent’s method; SimAnn: simulated annealing based optimization algorithm; Profil: nested profiling
estimator based on Brent’s method; IQR: inverse quantile regression. We use 2SLS estimates as starting values.

rithm. We do not report results for IQR, which we found to be computationally pro-
hibitive with three endogenous regressors. Table 7 shows that both methods exhibit sim-
ilar performances in terms of bias and RMSE, which are comparable to their respective
performances with two endogenous regressors. Table 8 displays average computation
times. As expected, the computational advantages of the contraction algorithm relative
to the nested fixed-point algorithm are more pronounced than with two endogenous
variables.

D.3 Additional simulations simple location scale DGP

This section presents some additional simulation evidence based on the following
location-scale shift model:

Yi = γ1 + γ2Xi + γ3D1�i + γ4D2�i + (γ5 + γ6D1�i + γ7D2�i)Ui�

Here, D1�i and D2�i are the endogenous variables of interest and Xi is an exogenous co-
variate. In addition, we have access to two instruments Z1�i and Z2�i. For γ2 = γ4 = γ7 =
0, this model reduces to the model considered in Section 6.1 of Andrews and Mikusheva
(2016). We set γ1 = · · · = γ7 = 1. To evaluate the performance of our algorithms with one
endogenous variable, we set γ4 = γ7 = 0 and use Z1i as the instrument. Following An-
drews and Mikusheva (2016), we consider a symmetric as well as an asymmetric DGP:

(Ui�D1�i�D2�i�Z1�i�Z2�i�Xi)

= (
�(ξU�i)��(ξD1�i)��(ξD2�i)��(ξZ1�i)��(ξZ2�i)��(ξX�i)

)
(symmetric)�

(Ui�D1�i�D2�i�Z1�i�Z2�i�Xi)

= (
ξU�i�exp(2ξD1�i)�exp(2ξD2�i)� ξZ1�i� ξZ2�i� ξX�i

)
(asymmetric)�
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Table 7. Bias and RMSE, 401(k) DGP with three
endogenous regressors.

Bias/102 RMSE/103

τ Contr Nested Contr Nested

Coefficient onD

0.15 −3�40 −5�02 7�52 7�62
0.25 −0�98 −1�52 4�11 4�12
0.50 −1�04 −1�42 2�03 2�06
0.75 −1�67 −1�50 1�86 1�86
0.85 0�86 1�03 2�05 2�05

Coefficient onD2

0.15 1�12 −0�13 1�01 1�03
0.25 2�11 0�74 1�01 1�00
0.50 0�80 −0�28 0�94 0�99
0.75 −0�39 0�48 1�00 1�09
0.85 −2�64 −0�83 1�13 1�25

Coefficient onD3

0.15 1�70 −0�25 1�08 1�13
0.25 1�57 −0�21 0�99 1�01
0.50 0�95 −0�06 0�92 0�96
0.75 −1�15 −0�33 1�02 1�11
0.85 −1�01 0�23 1�22 1�37

Note: Monte Carlo simulation with 500 repetitions as de-
scribed in the main text. Contr: contraction algorithm; Nested:
nested algorithm based on Brent’s method. We use 2SLS esti-
mates as starting values.

where (ξU�i� ξD1�i� ξD2�i� ξZ1�i� ξZ2�i� ξX�i) is a Gaussian vector with mean zero, all vari-

ances are set equal to one, Cov(ξU�ξD1) = Cov(ξU�ξD2) = 0�5, Cov(ξD1� ξZ1) = 0�8,

Cov(ξD2� ξZ2) = 0�4, which allows us to investigate the impact of instrument strength,

Table 8. Computation time, 401(k) DGP
with three endogenous regressors.

N Contr Nested

1000 0�36 6�29
5000 4�47 42�93

10,000 10�11 145�58

Note: The table reports average computation time in
seconds at τ = 0�5 over 20 simulation repetitions based
on the DGP described in the main text. Contr: contrac-
tion algorithm; Nested: nested algorithm based on Brent’s
method. We use 2SLS estimates as starting values.
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Table 9. Bias and RMSE, symmetric design with one endogenous regressor.

N = 500

Bias RMSE

τ Contr Brent Profil InvQR Contr Brent Profil InvQR

0�15 0�03 −0�00 −0�02 −0�00 0�10 0�10 0�11 0�10
0�25 0�03 0�00 −0�01 0�00 0�12 0�12 0�12 0�12
0�50 −0�00 −0�00 −0�02 −0�00 0�12 0�14 0�14 0�14
0�75 −0�04 −0�01 −0�03 −0�01 0�13 0�12 0�12 0�12
0�85 −0�04 −0�00 −0�02 −0�00 0�11 0�11 0�11 0�11

N = 1000

Bias RMSE

τ Contr Brent Profil InvQR Contr Brent Profil InvQR

0�15 0�02 0�00 −0�00 0�00 0�07 0�07 0�07 0�07
0�25 0�01 −0�00 −0�01 −0�00 0�08 0�08 0�08 0�08
0�50 −0�01 −0�01 −0�01 −0�01 0�09 0�10 0�10 0�10
0�75 −0�02 −0�00 −0�01 −0�00 0�09 0�08 0�08 0�08
0�85 −0�02 −0�00 −0�01 −0�00 0�08 0�08 0�08 0�08

Note: Monte Carlo simulation with 500 repetitions as described in the main text. Contr: contraction algorithm; Brent: root-
finding algorithm based on Brent’s method; Profil: profiling estimator based on Brent’s method; InvQR: inverse quantile regres-
sion. We use 2SLS estimates as starting values.

all other covariances are equal to zero, and � is the cumulative distribution function of
the standard normal distribution.28

We first investigate the bias and RMSE of the different methods. Tables 9–12 present
the results. With one endogenous variable, the performances of the root-finding algo-
rithm using Brent’s method, the profiling estimator, and IQR are similar both in terms
of bias and RMSE. The contraction algorithm performs well, but exhibits some bias at
the tail quantiles. Turning to the results with two endogenous variables, we can see that
the nested algorithm exhibits the best overall performance, both in terms of bias and
RMSE. The performances of the SA-based optimization algorithm, IQR, and the profil-
ing estimator are similar and only slightly worse than that of the nested algorithm. The
contraction algorithm tends to exhibit some bias at the tail quantiles. However, this bias
decreases substantially as the sample size gets larger. Finally, comparing the results for
the coefficients on D1 and D2, we can see that the instrument strength matters for the
performance of all estimators (including IQR), suggesting that weak identification can
have implications for the estimation of IVQR models.

Table 13 displays the empirical coverage probabilities of the bootstrap confidence
intervals. The results show that the our bootstrap procedure exhibits excellent size prop-
erties.

28To ensure that the weights are positive, we transform Z1�i and Z2�i by subtracting the minimum over
each sample and adding 0�1 under the asymmetric DGP.
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Table 10. Bias and RMSE, asymmetric design with one endogenous regressor.

N = 500

Bias RMSE

τ Contr Brent Profil InvQR Contr Brent Profil InvQR

0�15 0�11 0�01 −0�04 −0�00 0�22 0�20 0�21 0�20
0�25 0�07 0�00 −0�02 −0�00 0�17 0�16 0�17 0�16
0�50 0�04 −0�00 −0�02 −0�00 0�13 0�12 0�12 0�12
0�75 0�03 0�00 −0�01 0�00 0�11 0�11 0�11 0�11
0�85 −0�03 −0�01 −0�03 −0�00 0�12 0�11 0�12 0�11

N = 1000

Bias RMSE

τ Contr Brent Profil InvQR Contr Brent Profil InvQR

0�15 0�05 −0�01 −0�03 −0�01 0�16 0�15 0�15 0�15
0�25 0�04 0�00 −0�01 0�00 0�11 0�11 0�11 0�11
0�50 0�03 0�00 −0�01 0�00 0�08 0�08 0�08 0�08
0�75 0�01 −0�01 −0�02 −0�01 0�08 0�08 0�08 0�08
0�85 −0�03 −0�01 −0�02 −0�01 0�09 0�09 0�09 0�09

Note: Monte Carlo simulation with 500 repetitions as described in the main text. Contr: contraction algorithm; Brent: root-
finding algorithm based on Brent’s method; Profil: profiling estimator based on Brent’s method; InvQR: inverse quantile regres-
sion. We use 2SLS estimates as starting values.

Appendix E: Proofs of theoretical results in Section 3

Proof of Lemma 1. (i) We first show that L1 is well-defined. For a given θ−1 ∈ R
dD ,

let θ∗
1 ∈ arg minθ̃1∈RdX QP�1(θ̃1� θ−1). Under Assumption 2, the objective function θ̃1 �→

QP�1(θ̃1� θ−1) is convex and differentiable with respect to θ̃1. Therefore, by the necessary
and sufficient condition of minimization, θ∗

1 solves

EP
[(

1
{
Y ≤D′θ−1 +X ′θ∗

1
})
X
]= 0�

In what follows, we show that the map L1 : θ−1 �→ θ∗
1 is well-defined on R−1 using a

global inverse function theorem. Recall that

ΨP�1(θ)=EP
[(

1
{
Y ≤D′θ−1 +X ′θ1

})
X
]
�

This function is continuously differentiable with respect to θ. The Jacobian is given by

JΨP�1(θ)= ∂

∂θ′EP
[
FY |D�X�Z

(
D′θ−1 +X ′θ1

)
X
]=EP

[
fY |D�X�Z

(
D′θ−1 +X ′θ1

)
X
(
X ′�D′)]�

where the second equality follows from Assumption 2 and the dominated convergence
theorem. Define a transformΞ :Θ→R

dX+dD by

Ξ(θ) := (
ΨP�1(θ)

′� θ−1
′)′� (E.1)

We follow Krantz and Parks (2003, Section 3.3) to obtain an implicit function L1 on a
suitable domain such that θ1 = L1(θ2) if and only if ΨP�1(θ) = 0. The key is to apply a
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Table 11. Bias and RMSE, symmetric design with two endogenous regressors.

N = 500

Bias RMSE

τ Contr NestBr SimAnn Profil InvQR Contr NestBr SimAnn Profil InvQR

Coefficient onD1

0�15 0�00 −0�00 0�00 −0�02 −0�01 0�11 0�12 0�14 0�13 0�13
0�25 0�01 −0�00 −0�01 −0�02 −0�01 0�15 0�16 0�17 0�16 0�16
0�50 −0�02 −0�02 −0�02 −0�04 −0�02 0�17 0�19 0�19 0�19 0�20
0�75 −0�04 −0�03 −0�03 −0�05 −0�03 0�21 0�20 0�21 0�20 0�20
0�85 −0�05 −0�03 −0�03 −0�05 −0�03 0�18 0�17 0�18 0�18 0�17

Coefficient onD2

0�15 0�10 −0�01 −0�01 −0�05 −0�02 0�27 0�27 0�29 0�28 0�31
0�25 0�10 −0�00 −0�02 −0�04 −0�02 0�29 0�29 0�30 0�30 0�30
0�50 −0�01 −0�02 −0�02 −0�06 −0�02 0�33 0�38 0�39 0�40 0�39
0�75 −0�15 −0�04 −0�06 −0�08 −0�05 0�40 0�40 0�41 0�41 0�41
0�85 −0�19 −0�05 −0�06 −0�10 −0�07 0�39 0�36 0�40 0�38 0�43

N = 1000

Bias RMSE

τ Contr NestBr SimAnn Profil InvQR Contr NestBr SimAnn Profil InvQR

Coefficient onD1

0.15 −0�00 −0�00 −0�01 −0�01 −0�00 0�08 0�09 0�10 0�09 0�10
0.25 −0�00 −0�00 −0�01 −0�01 −0�01 0�10 0�11 0�12 0�11 0�13
0.50 −0�01 −0�01 −0�01 −0�02 −0�01 0�12 0�13 0�13 0�13 0�16
0.75 −0�01 −0�01 −0�01 −0�01 −0�00 0�13 0�13 0�14 0�13 0�14
0.85 −0�02 −0�01 −0�02 −0�02 −0�02 0�12 0�12 0�13 0�12 0�13

Coefficient onD2

0.15 0�05 −0�01 −0�01 −0�02 −0�02 0�19 0�19 0�21 0�19 0�20
0.25 0�05 −0�00 −0�01 −0�02 −0�01 0�22 0�21 0�23 0�22 0�23
0.50 −0�02 −0�02 −0�02 −0�04 −0�03 0�25 0�27 0�27 0�28 0�29
0.75 −0�09 −0�02 −0�02 −0�04 −0�03 0�27 0�25 0�28 0�25 0�26
0.85 −0�09 −0�01 −0�03 −0�04 −0�03 0�26 0�23 0�25 0�24 0�24

Note: Monte Carlo simulation with 500 repetitions as described in the main text. Contr: contraction algorithm; NestBr:
nested algorithm based on Brent’s method; SimAnn: simulated annealing based optimization algorithm; Profil: nested profiling
estimator based on Brent’s method; InvQR: inverse quantile regression. We use 2SLS estimates as starting values.

global inverse function theorem to Ξ. Toward this end, we analyze the Jacobian of Ξ,
which is given as

JΞ(θ) =
[
∂ΨP�1(θ1� θ−1)/∂θ

′
1 ∂ΨP�1(θ1� θ−1)/∂θ

′
−1

0d−1×d1 Id−1

]

=
[
EP
[
fY |D�X�Z

(
D′θ−1 +X ′θ1

)
XX ′] EP

[
fY |D�X�Z

(
D′θ−1 +X ′θ1

)
XD′]

0d−1×d1 Id−1

]
� (E.2)

where, for any d ∈ N, Id denotes the d× d identity matrix.



14 Kaido and Wüthrich Supplementary Material

Table 12. Bias and RMSE, asymmetric design with two endogenous regressors.

N = 500

Bias RMSE

τ Contr NestBr SimAnn Profil InvQR Contr NestBr SimAnn Profil InvQR

Coefficient onD1

0�15 −0�02 0�02 0�00 −0�03 0�01 0�25 0�26 0�28 0�27 0�26
0�25 −0�05 0�01 0�00 −0�01 −0�00 0�20 0�20 0�21 0�20 0�21
0�50 −0�04 −0�00 0�00 −0�01 0�00 0�16 0�17 0�21 0�17 0�19
0�75 −0�02 −0�02 −0�01 −0�02 −0�02 0�17 0�17 0�18 0�18 0�19
0�85 −0�01 −0�01 −0�02 −0�02 −0�02 0�20 0�19 0�19 0�20 0�19

Coefficient onD2

0�15 0�26 −0�06 −0�11 −0�16 −0�13 0�57 0�52 0�58 0�53 0�59
0�25 0�23 −0�01 −0�02 −0�06 −0�01 0�45 0�41 0�43 0�40 0�44
0�50 0�12 −0�03 −0�04 −0�07 −0�07 0�34 0�32 0�48 0�33 0�73
0�75 0�04 −0�05 −0�06 −0�11 −0�05 0�32 0�31 0�34 0�33 0�34
0�85 −0�13 −0�03 −0�01 −0�08 0�01 0�40 0�34 0�38 0�34 0�36

N = 1000

Bias RMSE

τ Contr NestBr SimAnn Profil InvQR Contr NestBr SimAnn Profil InvQR

Coefficient onD1

0�15 −0�03 0�01 −0�00 −0�02 −0�01 0�18 0�19 0�19 0�18 0�19
0�25 −0�04 −0�00 −0�01 −0�02 −0�01 0�15 0�15 0�16 0�15 0�16
0�50 −0�03 −0�01 −0�01 −0�01 −0�01 0�13 0�13 0�14 0�13 0�14
0�75 −0�03 −0�01 −0�01 −0�02 −0�01 0�12 0�12 0�13 0�13 0�14
0�85 0�01 0�00 0�00 −0�01 −0�00 0�14 0�13 0�15 0�14 0�15

Coefficient onD2

0�15 0�15 −0�03 −0�03 −0�07 −0�04 0�37 0�37 0�38 0�37 0�39
0�25 0�10 −0�01 −0�01 −0�05 −0�02 0�28 0�28 0�30 0�28 0�28
0�50 0�05 −0�02 −0�03 −0�04 −0�03 0�22 0�22 0�23 0�22 0�24
0�75 0�06 −0�01 −0�02 −0�03 −0�01 0�24 0�22 0�24 0�23 0�24
0�85 −0�08 −0�03 −0�04 −0�07 −0�03 0�27 0�24 0�26 0�25 0�24

Note: Monte Carlo simulation with 500 repetitions as described in the main text. Contr: contraction algorithm; NestBr:
nested algorithm based on Brent’s method; SimAnn: simulated annealing based optimization algorithm; Profil: nested profiling
estimator based on Brent’s method; InvQR: inverse quantile regression. We use 2SLS estimates as starting values.

Let I ⊂ {1� � � � � dX + dD}. For any matrix A, let [A]I�I denote a principal minor of A,
which collects the rows and columns of A whose indices belong to the index set I. By
(E.2), if I ⊂ {1� � � � � d1},

[
JΞ(θ)

]
I�I

=EP
[
fY |D�X�Z

(
D′θ−1 +X ′θ1

)
X̃X̃ ′]

for a subvector X̃ of X , which is positive definite by Assumption 2 and Lemma 4. If I ⊂
{d1 + 1� � � � � dX + dD}, [JΞ(θ)]I�I = I� for some 1 ≤ � ≤ dD and is hence positive definite.
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Table 13. Coverage, location-scale DGP with one endogenous regressor.

N = 500

Symmetric Design Asymmetric Design

1 − α= 0�95 1 − α= 0�9 1 − α= 0�95 1 − α= 0�9

τ Contr Brent Contr Brent Contr Brent Contr Brent

0�15 0�93 0�98 0�88 0�94 0�89 0�97 0�85 0�95
0�25 0�94 0�96 0�89 0�93 0�93 0�97 0�88 0�95
0�50 0�96 0�96 0�91 0�91 0�95 0�97 0�91 0�93
0�75 0�94 0�97 0�90 0�94 0�95 0�97 0�91 0�93
0�85 0�95 0�98 0�90 0�96 0�96 0�98 0�92 0�96

N = 1000

Symmetric Design Asymmetric Design

1 − α= 0�95 1 − α= 0�9 1 − α= 0�95 1 − α= 0�9

τ Contr Brent Contr Brent Contr Brent Contr Brent

0�15 0�95 0�96 0�90 0�92 0�92 0�97 0�85 0�93
0�25 0�95 0�96 0�91 0�91 0�92 0�95 0�87 0�91
0�50 0�96 0�96 0�90 0�90 0�94 0�96 0�90 0�93
0�75 0�95 0�96 0�90 0�91 0�95 0�95 0�91 0�91
0�85 0�96 0�97 0�93 0�94 0�96 0�95 0�92 0�91

Note: Monte Carlo simulation with 1000 repetitions as described in the main text. Contr: contraction algorithm; Brent:
root-finding algorithm based on Brent’s method. We use 2SLS estimates as starting values.

Otherwise, any principal minor is of the following form:

[
JΞ(θ)

]
I�I

=
[
EP
[
fY |D�X�Z

(
D′θ−1 +X ′θ1

)
X̃X̃ ′] B

0�×m I�

]

for some subvector X̃ ofX and am× �matrix B. Note that

det
([
JΞ(θ)

]
I�I

) = det
(
EP
[
fY |D�X�Z

(
D′θ−1 +X ′θ1

)
X̃X̃ ′]−BI−1

� × 0�×m
)

det(I�)

= det
(
EP
[
fY |D�X�Z

(
D′θ−1 +X ′θ1

)
X̃X̃ ′])> 0�

where the last inequality follows again from Assumption 2 and Lemma 4. Hence, JΞ(θ)
is a P-matrix. Note thatΘ is a closed rectangle. By Theorem 4 in Gale and Nikaido (1965),
Ξ is univalent, and hence the inverse mapΞ−1 is well-defined.

Let

R−1 = {
θ−1 ∈R

d−1 : (0� θ−1) ∈Ξ(Θ)}
= {
θ−1 ∈R

d−1 :ΨP�1(θ1� θ−1)= 0� for some (θ1� θ−1) ∈Θ}�
which coincides with the definition in (3.5) with j = 1. Let F1 = [Id1�0d1×d−1 ]. For each
θ−1 ∈R−1, define

L1(θ−1) := F1Ξ
−1(0� θ−1)�
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Then, for any θ ∈ Θ, ΨP�1(θ) = 0 if and only if θ−1 ∈ R−1 and Ξ(θ) = (0� θ−1). By the
univalence of Ξ, this is true if and only if θ =Ξ−1(0� θ−1), and the first d1 components
extracted by applying F1 is θ1. This ensures L1 is well-defined on R−1.

Below, for any setA, letAo denote the interior ofA. LetRo−1 = {θ−1 ∈R
d−1 : (0� θ−1) ∈

Ξ(Θo)}. Note that ΨP�1 is C1 on Θo and, for each θ = (θ1� θ−1) ∈ Θ with θ−1 ∈ Rod−1
,

det(∂ΨP�1(θ)/∂θ′
1) 
= 0. Therefore, by the implicit function theorem, there is a C1-function

L̃1 and an open set V containing θ−1 such that

ΨP�1
(
L̃1(θ−1)�θ−1

)= 0� for all θ−1 ∈ V �

However, such a local implicit function must coincide with the unique global map L1

on V . Hence, L1|V = L̃1 and, thereforeL1 is continuously differentiable at θ−1. Since the
choice of θ−1 is arbitrary, L1 is continuously differentiable for all θ−1 ∈Ro2 .

Showing that the conclusion holds for any other Lj for j = 2� � � � � J is similar, and
hence we omit the proof.

Lemma 4. Suppose EP [fY |D�X�Z(D′θ−1 + X ′θ1)XX
′] is positive definite. Then, for any

subvector X̃ of X with dimension d̃X ≤ dX , EP [fY |D�X�Z(D′θ−1 +X ′θ1)X̃X̃
′] is positive

definite.

Proof. In what follows, letW = fY |D�X�Z(D′θ−1 +X ′θ1) and let

A :=EP
[
fY |D�X�Z

(
D′θ−1 +X ′θ1

)
XX ′]=E[WXX ′]�

Let X̃ be a subvector ofX with d̃X components. Then there exists a dX×dX permutation
matrix Pπ such that the first d̃X components of PπX is X̃ .

Let B := E[W PπXX ′P ′
π] and note that

B= PπE
[
WXX ′]P ′

π = PπAP ′
π� (E.3)

by the linearity of the expectation operator andW being a scalar. Let λ be an eigenvalue
of B such that

Bz = λz� (E.4)

for the corresponding eigenvector z ∈ RdX . By (E.3)–(E.4),

PπAP
′
πz = λz ⇔ AP ′

πz = λP−1
π z�

Note that P−1
π = P ′

π due to Pπ being a permutation matrix. Letting y := P ′
πz then yields

Ay = λy�

which in turn shows that λ is an eigenvalue ofA. For any eigenvalue ofA, the argument
above can be reversed to show that it is also an eigenvalue of B. Since the choice of the
eigenvalue is arbitrary,A and B share the same eigenvalues.
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Now let C := E[W X̃X̃ ′] and note that it is a leading principal submatrix of B. Then,
by the eigenvalue inclusion principle (Horn and Johnson (2012, Theorem 4.3.28)),

λmin(C)≥ λmin(B)= λmin(A) > 0�

where the last inequality follows from the positive definiteness ofA. This completes the
claim of the lemma.

Proof of Corollary 1. The existence ofK and its continuous differentiability follows
immediately from Lemma 1. ForM , by the definition of R̃1, for any θ−1 ∈ R̃j , there exists
(θ1� θ2) ∈Θ1 ×Θ2 such that

ΨP�1(θ1� θ−1)= 0�

ΨP�2(θ1� θ2�π−{1�2}θ−1)= 0�

By (i), one may then write θ1 = L1(θ−1) and θ2 = L2(L1(θ−1)�π−{1�2}θ−1). Hence, the
mapM1 : R̃1 →Θ2 below is well-defined:

M1(θ−1)=L2
(
L1(θ−1)�π−{1�2}θ−1

)
�

Recursively, arguing in the same way, the maps

M2(θ−1)=L3
(
L1(θ−1)�M1(θ−1)�π−{1�2�3}θ−1

)
���

Mj(θ−1)=Lj+1
(
L1(θ−1)�M1(θ−1)� � � � �Mj−1(θ−1)�π−{1�����j+1}θ−1

)
���

MdD(θ−1)=LJ
(
L1(θ−1)�M1(θ−1)� � � � �MdD−1(θ−1)

)
are well-defined on R̃2� � � � � R̃dD , respectively. The continuous differentiability of M fol-
lows from that of Ljs and the chain rule.

Proof of Proposition 1. =⇒: For every solution, ΨP(θ∗) = 0, θ∗
j = Lj(θ

∗
−j) by con-

struction under Assumptions 1 and 2. It follows thatK(θ∗)= θ∗ andM(θ∗
−1)= θ∗

−1.
⇐=: For the simultaneous response, note that K(θ̄) = θ̄ implies that θ̄j = Lj(θ̄−j)

for all j ∈ {1� � � � � J}. Thus, θ̄ solves ΨP(θ̄)= 0 by Lemma 1. Consider next the sequential
response. Let θ̃� θ̄ ∈Θ be such that θ̃j =Lj(θ̄−j) for j = 1� � � � � J. By Lemma 1, they satisfy

ΨP�1(θ̃1� θ̄2� θ̄3� � � � � θ̄J) = 0

ΨP�2(θ̃1� θ̃2� θ̄3� � � � � θ̄J) = 0

���

ΨP�J(θ̃1� θ̃2� θ̃3� � � � � θ̃J) = 0�

Thus, a fixed point θ̃= θ̄ satisfies ΨP(θ̄)= 0.
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Appendix F: Proofs of theoretical results in Section 4

Proof of Proposition 2. We prove the result for K. By Assumption 3, there exists a
strictly convex set D̃K on which the spectral norm of the Jacobian of K is uniformly
bounded by 1. This ensures that K is a contraction map on cl(D̃K), and the claim of the
proposition now follows from Theorem 2.2.16 in Hasselblatt and Katok (2003).

Appendix G: Proofs of theoretical results in Section 6

To state and prove results in a concise manner, we use the population and sample si-
multaneous response mapsK and K̂ below to define our estimand θ∗ and estimator θ̂N .
Namely, θ∗ is the fixed point ofK, and θ̂N solves∥∥θ̂N − K̂(θ̂N)

∥∥≤ inf
θ′∈Θ

∥∥θ′ − K̂(θ′)∥∥+ op
(
N−1/2)�

Note that the fixed-point estimator defined in (6.1)–(6.2) is asymptotically equivalent to
the estimator above due to Lemma 5.

Proof of Theorem 1. LetH := IdX+dD −K. A fixed point θ∗ ofK then satisfies

H
(
θ∗)= 0�

Similarly, let Ĥ := IdX+dD − K̂. The estimator θ̂N satisfies

∥∥Ĥ(θ̂N)∥∥2 ≤ inf
θ′∈Θ

∥∥Ĥ(θ′)∥∥2 + r2
N�

where rN = op(N
−1/2). Let ϕ : �∞(Θ)dX+dD × R → R

dX+dD be a map such that, for each
(H� r) ∈ �∞(Θ)dX+dD ×R, θ̃= ϕ(H� r) is an r-approximate solution, which satisfies

∥∥H(θ̃)∥∥2 ≤ inf
θ′∈Θ

∥∥H(θ′)∥∥2 + r2�

One may then write
√
N
(
θ̂N − θ∗)= √

N
(
ϕ(Ĥ� r̂)−ϕ(H�0)

)
�

By Lemma 12,
√
N(K̂ −K)� W in �∞(Θ)dX+dD , where W is a Gaussian process defined

in Lemma 12. Assumption 2(4) and JΨP (θ
∗) being full rank imply det(IdX+dD − JK(θ∗)) 
=

0 (see (G.4)), which ensures the condition of Lemma 7. By Lemmas 6–7, Condition Z in
Chernozhukov, Fernandez-Val, and Melly (2013) (CFM henceforth) holds, which in turn
ensures that one may apply Lemmas E.2 and E.3 in CFM. This ensures

√
N
(
ϕ(Ĥ� r̂)−ϕ(H�0)

)
� ϕ′

H�0(W�0)= −Ḣ−1
θ∗ W

(
θ∗)�

Hence, we obtain (6.3) with

V = Ḣ−1
θ∗ E

[
W
(
θ∗)

W
(
θ∗)′](Ḣ−1

θ∗
)′
�

Finally, note that Ḣθ∗ = IdX+dD − JK(θ∗) by Lemma 7. This establishes the theorem.
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Proof of Theorem 2. Recall that Ĥ = IdX+dD − K̂. The estimator θ̂N satisfies

∥∥Ĥ(θ̂N)∥∥2 ≤ inf
θ′∈Θ

∥∥Ĥ(θ′)∥∥2 + r2
N�

where rN = op(N−1/2). Similarly, let Ĥ∗ = IdX+dD − K̂∗. Let P∗ denote the law of Ĥ∗ con-
ditional on {Wi}∞i=1. The bootstrap estimator θ̂∗

N satisfies

∥∥Ĥ∗(θ̂∗
N

)∥∥2 ≤ inf
θ′∈Θ

∥∥Ĥ∗(θ′)∥∥2 + (
r∗N
)2
�

where r∗N = oP∗(N−1/2) conditional on {Wi}∞i=1.
Using the r-approximation, one may therefore write

√
N
(
θ̂∗
N − θ̂N

)= √
N
(
ϕ
(
Ĥ∗� r∗N

)−ϕ(Ĥ� rN)
)
�

Let EP∗ denote the conditional expectation with respect to P∗. Let BL1 denote the space
of bounded Lipschitz functions on R

dX+dD with Lipschitz constant 1. Then, for any ε > 0,

sup
h∈BL1

∣∣EP∗h
(√
N
[
ϕ
(
Ĥ∗� r∗N

)−ϕ(Ĥ� rN)
])−EP∗h

(
ϕ′
H�0

(√
N
[(
Ĥ∗� r∗N

)′ − (Ĥ� rN)′]))∣∣
≤ ε+ 2P∗(∥∥√N[ϕ(Ĥ∗� r∗N

)−ϕ(Ĥ� rN)
]−ϕ′

H�0
(√
N
[(
Ĥ∗� r∗N

)− (Ĥ� rN)
])∥∥> ε)� (G.1)

By Lemma 12,
√
N(Ĥ∗ − Ĥ) = −√

N(K̂∗ − K̂)
L∗
� −W

d= W. Noting that h ◦ ϕ′
H�0 ∈

BL1(�
∞(Θ)×R) and rN = op(N−1/2), it follows that

sup
h∈BL1

∣∣EP∗h ◦ϕ′
H�0

(√
N
[(
Ĥ∗� r∗N

)− (Ĥ� rN)
])−EP∗h ◦ϕ′

H�0(W�0)
∣∣→ 0�

with probability approaching 1 due to rN = oP(N−1/2). Hence, for the conclusion of the
theorem, it suffices to show that the second term on the right-hand side of (G.1) tends
to 0 in probability.

For this, as shown in the proof of Theorem 1, ϕ is Hadamard differentiable at (H�0).
Hence, by Theorem 3.9.4 in Van der Vaart and Wellner (1996),

√
N
[
ϕ
(
Ĥ∗� r∗N

)−ϕ(H�0)
]= ϕ′

H�0
(√
N
[(
Ĥ∗� r∗N

)− (H�0)
])+ oP∗(1)�

√
N
[
ϕ(Ĥ� rN)−ϕ(H�0)

]= ϕ′
H�0

(√
N
[
(Ĥ� rN)− (H�0)

])+ oP(1)�
Take the difference of the left- and right-hand sides of the equations above respectively
and note that ϕ′

H�0 is linear. This implies the second term on the right-hand side of (G.1)
tends to 0 in probability. This ensures

√
N
(
ϕ
(
Ĥ� r∗N

)−ϕ(Ĥ� rN)
) L∗
� ϕ′

H�0(W�0)= −Ḣ−1
θ∗ W

(
θ∗)�

Proof of Corollary 2. Note that V and g may be written as

V = (
IdX+dD − JK

(
θ∗))−1

E
[
g
(
W ;θ∗)g(W ;θ∗)′][(IdX+dD − JK

(
θ∗))−1]′

� (G.2)

g
(
w;θ∗) = R−1(θ∗)f (w;θ∗)� (G.3)
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where R(θ∗) is a dX + dD-by-dX + dD matrix given by

R
(
θ∗)=

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

∂2

∂θ1∂θ
′
1
QP�1

(
θ∗) 0 · · · · · · 0

0
∂2

∂θ2∂θ
′
2
QP�2

(
θ∗) 0 · · · 0

��� 0
� � �

���

0 · · · · · · ∂2

∂θJ∂θ
′
J

QP�J
(
θ∗)

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

=

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

∂

∂θ′
1
ΨP�1

(
θ∗) 0 · · · · · · 0

0
∂

∂θ′
2
ΨP�2

(
θ∗) 0 · · · 0

��� 0
� � �

���

0 · · · · · · ∂

∂θ′
J

ΨP�J
(
θ∗)

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠
�

Further, by Lemma 1 and the form of JL−j (θ
∗
j ) given in (4.1),

JK
(
θ∗)

=

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

0dX×dX
∂L1

(
θ∗)

∂θ′
2

· · · ∂L1
(
θ∗)

∂θ′
J

∂L2
(
θ∗)

∂θ′
1

0 · · · ∂L2
(
θ∗)

∂θ′
J

���
� � �

���

∂LJ
(
θ∗)

∂θ′
1

∂LJ
(
θ∗)

∂θ′
2

· · · 0

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

=

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

0dX×dX −
(
∂ΨP�1

(
θ∗)

∂θ′
1

)−1 ∂ΨP�1(θ∗)
∂θ′

2
· · · −

(
∂ΨP�1

(
θ∗)

∂θ′
1

)−1 ∂ΨP�1
(
θ∗)

∂θ′
J

−
(
∂ΨP�2

(
θ∗)

∂θ′
2

)−1 ∂ΨP�2
(
θ∗)

∂θ′
1

0 · · · −
(
∂ΨP�2

(
θ∗)

∂θ′
2

)−1 ∂ΨP�2
(
θ∗)

∂θ′
J

���
� � �

���

−
(
∂ΨP�J

(
θ∗)

∂θ′
J

)−1 ∂ΨP�J
(
θ∗)

∂θ′
1

−
(
∂ΨP�J

(
θ∗)

∂θ′
J

)−1 ∂ΨP�2
(
θ∗)

∂θ′
2

· · · 0

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠
�

The form of R(θ∗) and JK(θ∗) imply

R
(
θ∗)(IdX+dD − JK

(
θ∗))= JΨP

(
θ∗)� (G.4)

where JΨP is the Jacobian of the estimating equations. Equations (G.2)–(G.3) and (G.4)
ensure that one may also write

V = JΨP
(
θ∗)−1

E
[
f
(
W ;θ∗)f (W ;θ∗)′][JΨP (θ∗)−1]′

� (G.5)
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As shown in Chernozhukov and Hansen (2006), the Jacobian of ΨP is given by

JΨP
(
θ∗)=E[fε(τ)|X�D�Z(0)Ψ(τ)[X ′�D′]]� (G.6)

where Ψ(τ)= (X ′�Z′)′. Furthermore,

E
[
f
(
W ;θ∗)f (W ;θ∗)′]= τ(1 − τ)E[Ψ(τ)Ψ(τ)′]� (G.7)

Hence, (G.5)–(G.7) show that V coincides with the asymptotic variance of the estimator
that solves the estimating equations in (6.5).

Lemma 5. Suppose Assumptions 1–2 hold. (i) Let θ̂N be an estimator of θ∗ that satisfies∥∥θ̂N − K̂(θ̂N)
∥∥≤ inf

θ′∈Θ
∥∥θ′ − K̂(θ′)∥∥+ op

(
N−1/2)� (G.8)

Then, it also satisfies (6.1)–(6.2); (ii) Let θ̂N be an estimator of θ∗ that satisfies (6.1)–(6.2).
Then it also satisfies (G.8).

Proof. (i) Consider the case j = 2. Note that, by (G.8),

θ̂N�2 − L̂2
(
L̂1(θ̂N�−1)� θ̂N�3� � � � � θ̂N�J

)
= θ̂N�2 − L̂2(θ̂N�1 + rN�1� θ̂N�3� � � � � θ̂N�J) (G.9)

= L̂2(θ̂N�1� θ̂N�3� � � � � θ̂N�J)− L̂2(θ̂N�1 + rN�1� θ̂N�3� � � � � θ̂N�J)� (G.10)

where rN�1 = op(N−1/2), and the second equality follows from the definition of θ̂N�2. The
right-hand side of (G.10) can be written as

L̂2(θ̂N�1� θ̂N�3� � � � � θ̂N�J)− L̂2(θ̂N�1 + rN�1� θ̂N�3� � � � � θ̂N�J)
= ([

L̂2(θ̂N�1� θ̂N�3� � � � � θ̂N�J)−L2(θ̂N�1� θ̂N�3� � � � � θ̂N�J)
]

− [
L̂2(θ̂N�1 + rN�1� θ̂N�3� � � � � θ̂N�J)−L2(θ̂N�1 + rN�1� θ̂N�3� � � � � θ̂N�J)

])
+ [
L2(θ̂N�1 + rN�1� θ̂N�3� � � � � θ̂N�J)−L2(θ̂N�1� θ̂N�3� � � � � θ̂N�J)

]
= op

(
N−1/2)+OP(rN�1)� (G.11)

where the last equality follows from the stochastic equicontinuity of LN shown in the
proof of Lemma 11 and L2 being Lipschitz since L2 is continuously differentiable with
a derivative that is uniformly bounded on the compact set Θ. By (G.9)–(G.11), it holds
that θ̂N�j =Mj(θ̂N�−1)+ op(N−1/2) for j = 2. Repeat the same argument sequentially for
j = 3� � � � � J. The first conclusion of the lemma then follows.

(ii) Suppose now that rN�1 := θ̂N�1 − L̂1(θ̂N�−1) 
= oP(N
−1/2). Then, there is a sub-

sequence kN along which, for any η > 0,
√
kNrkN�1 > η for all kN with positive prob-

ability. Then the OP(rkN�1)-term in (G.11) is not op(k
−1/2
N ), which therefore implies

θ̂N�j 
=Mj(θ̂N�−1)+ op(N
−1/2) for j = 2. The second conclusion of the lemma then fol-

lows.
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Lemma 6. Let Λ⊂ R
p be a compact set, and let K : Λ→ R

p be a map that has a unique
fixed point λ0 ∈ Λ. let H : Λ→ R

p be defined by H(λ) := λ−K(λ). Then H−1(x) = {λ ∈
Λ :H(λ)= x} is continuous at x= 0 in Hausdorff distance.

Proof. For any x, write

H−1(x)= {
λ : λ−K(λ)= x}�

Let xn → 0. Since λ0 is the unique fixed point ofK,H−1(0)= {λ0}. Therefore,

dH
(
H−1(0)�H−1(xn)

)= max
{

inf
λ∈H−1(xn)

‖λ− λ0‖� sup
λ∈H−1(xn)

‖λ− λ0‖
}

= sup
λ∈H−1(xn)

‖λ− λ0‖�

Hence, it suffices to show that supλ∈H−1(xn)
‖λ− λ0‖ = o(1). We show this by contradic-

tion. Suppose that there is a sequence {λn} ⊂Λ and δ > 0 such that λn ∈H−1(xn) for all n
and {λn} has a subsequence {λkn} such that ‖λkn −λ0‖> δ for all n. λkn ∈Λ is a sequence
in a compact space, and hence there is a further subsequence λhn such that λhn → λ∗ for
some λ∗ ∈Λ with λ∗ 
= λ0. By the continuity ofK, one then has

λhn −K(λhn)→ λ∗ −K(λ∗)�
By λhn −K(λhn)= xn and xn → 0, it must hold that

λ∗ −K(λ∗)= 0�

However this contradicts the fact that λ0 is the unique fixed point, and hence the con-
clusion follows.

Lemma 7. SupposeH = I−K andK : Rp →R
p is continuously differentiable at λ0. Sup-

pose further that det(I − JK(λ0)) 
= 0. Let Ḣλ0 := I − JK(λ0). Then

lim
t↓0

sup
h:‖h‖=1

∥∥t−1[H(λ0 + th)−H(λ0)
]− Ḣλ0h

∥∥= 0�

and

inf
h:‖h‖=1

‖Ḣλ0h‖> 0�

Proof. Let {hn} ⊂ S
p be a sequence in the unit sphere S

p = {x ∈ R
p : ‖x‖ = 1}. Then

t−1[H(λ0 + thn)−H(λ0)
]− Ḣλ0hn

= t−1[λ0 + thn +K(λ0 + thn)− λ0 −K(λ0)
]− hn − JK(λ0)hn

= t−1[K(λ0 + thn)−K(λ0)
]− JK(λ0)hn

= (
JK(λ̄n)− JK(λ0)

)
hn�
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where λ̄n is a mean value between λ0 + thn and λ0. Therefore, by the Cauchy–Schwarz
inequality, ∥∥(JK(λ̄n)− JK(λ0)

)
hn
∥∥≤ ∥∥JK(λ̄n)− JK(λ0)

∥∥‖hn‖ → 0�

where we used ‖hn‖ = 1, λ̄n → λ0, and the continuity of the Jacobian.
For the second claim, note that

‖Ḣλ0h‖ = ∥∥(I − JK(λ0)
)
h
∥∥�

and h �→ ‖(I − JK(λ0))h‖ is continuous. Since the domain of h is compact, there is h∗ ∈
S
p such that inf‖h‖=1 ‖Ḣλ0h‖ = ‖(I − JK(λ0))h

∗‖. Let q = (I − JK(λ0))h
∗ and note that

I − JK(λ0) is linearly independent (due to det(I − JK(λ0)) 
= 0), and hence q 
= 0. Hence
inf‖h‖=1 ‖Ḣλ0h‖ = ‖q‖> 0. Hence, the second conclusion follows.

The following result is a slight extension of Lemma E.1 in CFM.

Lemma 8. Suppose that Λ ⊂ R
p and U is a compact and convex set in R

q. Let I be an
open set containing U . Suppose that (a) Ψ : Λ× I → R

p is continuous and λ �→ Ψ(λ�u)

is the gradient of a convex function in λ for each u ∈ U ; (b) for each u ∈ U , Ψ(λ0(u)�u)=
0; (c) ∂

∂(λ′�u′)Ψ(λ�u) exists at (λ0(u)�u) and is continuous at (λ0(u)�u) for each u ∈ U
and Ψ̇λ0(u)�u := ∂

∂λ′Ψ(λ�u)|λ0(u) obeys infu∈U inf‖h‖=1 ‖Ψ̇λ0(u)�uh‖> c0 > 0. Then Condition
Z in CFM holds and u �→ λ0(u) is continuously differentiable with derivative Jλ0(u) =
−Ψ̇−1

λ0(u)u
∂
∂u′Ψ(λ0(u)�u).

Proof. The proof is the same as that of Lemma E.1 in CFM, in which U is a compact
interval in R. A slight modification is needed when one computes the derivative of λ0(u)

with respect to u. Since u is allowed to be multidimensional, the implicit function theo-
rem gives

Jλ0(u)= −Ψ̇−1
λ0(u)u

∂

∂u′Ψ
(
λ0(u)�u

)
�

which is uniformly bounded and continuous in u by condition (c), which ensures con-
tinuous differentiability of u �→ λ0(u). Note that for any δ > 0 and λ ∈ Bδ(λ0(u)), there is
η> 0 and u′ such that ‖u′ − u‖ ≤ η so that

∥∥λ− λ0
(
u′)∥∥≤ ∥∥λ− λ0(u)

∥∥+ ∥∥λ0(u)− λ0
(
u′)∥∥≤ 2δ�

Since U is compact (and hence totally bounded), there is a finite set {uj}Jj=1 ⊂ U
such that U ⊂ ⋃

j Bη(uj). The argument above then shows that N = ⋃
u∈U Bδ(λ0(u)) ⊂⋃

j B2δ(λ0(uj)), which ensures that N is totally bounded. Since N is a subset of a Eu-
clidean space (equipped with a complete metric), it follows that N is compact. This en-
sures condition Z (i) in CFM. The rest of the proof is essentially the same as the case in
which U being a compact interval.
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Lemma 9. Suppose Assumption 2 holds. Let w= (y�d′�x′� z′) and let τ ∈ (0�1). Define

M := {
f : f (w;θ)= ((

1
{
y ≤ d′θ−1 + x′θ1

}− τ)x�(
1
{
y ≤ d′θ−1 + x′θ1

}− τ)z1� � � � �
(
1
{
u≤ d′θ−1 + x′θ1

}− τ)zdD)� θ ∈Θ}�
Then M is a Donsker-class.

Proof. The proof is standard, and hence we give a brief sketch for the first component
of f , f1(w;θ)= (1{y ≤ d′θ−1 + x′θ1} − τ)x. Note that w �→ 1{y ≤ d′θ−1 + x′θ1} − τ belongs
to Type I-class in Andrews (1994), and the map w �→ x does not depend on the param-
eter. By Theorems 2 and 3 in Andrews (1994), this function then satisfies the uniform
entropy condition with the envelope function M̄(w) = x, which is square integrable by
assumption. Similar arguments apply to the other components of f . By Theorem 1 in An-
drews (1994), the empirical process: Gnf is stochastically equicontinuous, and Gnf (·� θ)
obeys the classical central limit theorem for each θ ∈Θ. Hence, we conclude that M is
Donsker.

Below, let g(w;θ)= (g1(w;θ)′� � � � � gJ(w;θ))′ be a vector such that

gj(w;θ)=
(

∂2

∂θj∂θ
′
j

QP�j
(
Lj(θ−j)� θ−j

))−1
fj
(
w;Lj(θ−j)� θ−j

)
� j = 1� � � � � J�

Let ρ(θ� θ̃) := ‖diag(EP [(g(W ;θ)−EP [g(W ;θ)])(g(W ; θ̃)−EP [g(W ; θ̃)])′])‖ be the vari-
ance semimetric. Let Wi = (Yi�D

′
i�X

′
i�Z

′
i), i = 1� � � � �N be an i.i.d. sample generated

from the IVQR model. Define

LN�j(θ−j) := √
N
(
L̂j(θ−j)−Lj(θ−j)

)
� j = 1� � � � � J� (G.12)

Similarly, let W ∗
i = (Y ∗

i �D
∗′
i �X

∗′
i �Z

∗′
i )

′, i = 1� � � � �N be a bootstrap sample from the em-
pirical distribution PN of {Wi}. Define

L∗
N�j(θ−j) := √

N
(
L̂∗
j (θ−j)− L̂j(θ−j)

)
� j = 1� � � � � J�

where L̂∗
j is the sample best response map of player j, which is defined as in (5.3)–(5.4)

while replacingWi with the bootstrap sampleW ∗
i in (5.1)–(5.2).

Lemma 10 below shows that the sample BR functions approximately solve sample
estimating equations and Lemma 11 characterizes the limiting distributions of LN and
L∗
N .

Lemma 10. Let the sample BR functions be L̂j(θ−j) ∈ argminθ̃jQN�j(θ̃j� θ−j), j = 1� � � � � J.

Let L̂∗
j (θ−j) be an analog of L̂j(θ−j) for the bootstrap sample. Then (i) the sample BR
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functions satisfy

∣∣∣∣∣ 1
N

N∑
i=1

(
1
{
Yi ≤D′

iθ−1 +X ′
iL̂1(θ−1)

}− τ)Xi
∣∣∣∣∣
2

≤ inf
θ1∈Θ1

∣∣∣∣∣ 1
N

N∑
i=1

(
1
{
Yi ≤D′

iθ−1 +X ′
iθ1
}− τ)Xi

∣∣∣∣∣
2

+ r2
N�1(θ−1)� (G.13)

and ∣∣∣∣∣ 1
N

N∑
i=1

(
1
{
Yi ≤

(
X ′
i�D

′
i�−(j−1)

)′
θ−j +D′

i�jL̂j(θ−j)
}− τ)Zi�j

∣∣∣∣∣
2

≤ inf
θj∈Θj

∣∣∣∣∣ 1
N

N∑
i=1

(
1
{
Yi ≤

(
X ′
i�D

′
i�−(j−1)

)′
θ−j +D′

i�jL̂j(θ−j)
}− τ)Zi�j

∣∣∣∣∣
2

+ r2
N�j(θ−j)� j = 2� � � � � J� (G.14)

where supθ−j∈Θ−j |rN�j(θ−j)| = oP(N
−1/2) for all j; (ii) the sample BR functions L̂∗

j (θ−j),
j = 1� � � � � J in the bootstrap sample satisfy (G.13)–(G.14) while replacing (Yi�Di�Xi�Zi)
with a bootstrap sample (Y ∗

i �D
∗
i �X

∗
i �Z

∗
i ), each L̂j with L̂∗

j , and each rN�j with r∗N�j such

that supθ−j∈Θ−j |r∗N�j(θ−j)| = oP∗(N−1/2).

Proof. (i) For j ≥ 2, the subgradient ofQN�j is

ξj = 1
N

N∑
i=1

(
1
{
Yi ≤

(
X ′
i�D

′
i�−(j−1)

)′
θ−j +D′

i�j−1L̂j(θ−j)
}− τ)Zi�j−1�

and hence by the property of the subgradient, for any v ∈R, one has

ξjv≤ ∇θjQN�j
(
L̂j(θ−j)� θ−j� v

)
�

where ∇θjQN�j(L̂j(θ−j)� θ−j� v) is the directional derivative of QN�j(θj� θ−j) with respect

to θj toward direction v ∈R evaluated at (L̂j(θ−j)� θ−j). Note that the directional deriva-
tive is given by

∇θjQN�j
(
L̂j(θ−j)� θ−j� v

)

= − 1
N

N∑
i=1

ψ∗
τ

(
Yi −

(
X ′
i�D

′
i�−(j−1)

)′
θ−j −D′

i�j−1L̂j(θ−j)�−Zi�j−1v
)
Zi�j−1v�

where

ψ∗
τ(u�w)=

{
τ− 1{u < 0}� u 
= 0�

τ− 1{w< 0}� u= 0�
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Observe that −∇θjQN�j(L̂j(θ−j)� θ−j�−v)≤ ξv≤ ∇θjQN�j(L̂j(θ−j)� θ−j� v). This implies

|ξjv| ≤ ∇θjQN�j
(
L̂j(θ−j)� θ−j� v

)− (−∇θjQN�j
(
L̂j(θ−j)� θ−j�−v

))

= 1
N

N∑
i=1

(−ψ∗
τ

(
Yi −

(
X ′
i�D

′
i�−(j−1)

)′
θ−j −D′

i�jL̂j(θ−j)�−Zi�j−1v
)

+ψ∗
τ

(
Yi −

(
X ′
i�D

′
i�−(j−1)

)′
θ−j −D′

i�jL̂j(θ−j)�Zi�j−1v
))
Zi�j−1v

= 1
N

N∑
i=1

1
{
Yi =

(
X ′
i�D

′
i�−(j−1)

)′
θ−j +D′

i�jL̂j(θ−j)
}

sgn(Zi�j−1v)Zi�j−1v

= 1
N

N∑
i=1

1
{
Yi =

(
X ′
i�D

′
i�−(j−1)

)′
θ−j +D′

i�jL̂j(θ−j)
}|Zi�j−1v|

≤
(
N∑
i=1

1
{
Yi =

(
X ′
i�D

′
i�−(j−1)

)′
θ−j +D′

i�jL̂j(θ−j)
})

max
i=1�����N

|Zi�j−1v|
N

�

Noting that
∑N
i=1 1{Yi = (X ′

i�D
′
i�−(j−1))

′θ−j+D′
i�jL̂j(θ−j)} = dim(θj)= 1 and taking v= 1,

we obtain∣∣∣∣∣ 1
N

N∑
i=1

(
1
{
Yi ≤

(
X ′
i�D

′
i�−(j−1)

)′
θ−j +D′

i�jL̂j(θ−j)
}− τ)Zi�j

∣∣∣∣∣≤ max
i=1�����N

|Zi�j−1|
N

= oP
(
N−1/2)�

uniformly in θ−j , where the last equality is due to E[|Zi�j−1|2]<∞ by Assumption 2(2).
Therefore, for some rN�j satisfying the assumption of the lemma, we may write

∣∣∣∣∣ 1
N

N∑
i=1

(
1
{
Yi ≤

(
X ′
i�D

′
i�−(j−1)

)′
θ−j +D′

i�jL̂j(θ−j)
}− τ)Zi�j

∣∣∣∣∣
2

≤ r2
N�j(θ−j)≤ inf

θj∈Θj

∣∣∣∣∣ 1
N

N∑
i=1

(
1
{
Yi ≤

(
X ′
i�D

′
i�−(j−1)

)′
θ−j +D′

i�jθj
}− τ)Zi�j

∣∣∣∣∣
2

+ r2
N�j(θ−j)�

The proof for j = 1 is similar. Also, (ii) can be shown by mimicking the argument above.

Lemma 11. Suppose that Assumptions 1 and 2 hold. Then (i) LN := (LN�1� � � � �LN�J) de-
fined in (G.12) satisfies

LN(·)�W�

where W is a tight Gaussian process in �∞(Θ)dX+dD with the covariance kernel

Cov
(
W(θ)�W(θ̃)

)=EP
[(
g(W ;θ)−EP

[
g(W ;θ)])(g(W ; θ̃)−EP

[
g(W ; θ̃)])′]; (G.15)
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LN is stochastically equicontinuous with respect to the variance semimetric ρ; (ii) L∗
N :=

(L∗
N�1� � � � �L

∗
N�J) satisfies

L∗
N(·) L

∗
� W;

(iii) ρ satisfies limδ↓0 sup‖θ−θ̃‖<δ ρ(θ� θ̃)→ 0.

Proof. (i) We first work with LN�1. For this, we establish that L1 is Hadamard differen-
tiable. Note that θ1 =L1(θ−1) solves

EP
[(

1
{
Y ≤D′θ−1 +X ′θ1

}− τ)X]= 0�

Take U =Θ−1,Ξ =Θ1,ψ(λ�u)=EP [(1{Y ≤D′u+X ′λ}−τ)X]. Defineφ : �∞(Ξ×U)kb ×
�∞(U)→ �∞(U), which maps (ψ� r) to a solution φ(ψ� r)= λ(·) such that

∥∥ψ(λ(u)�u)∥∥2 ≤ inf
λ′∈Θ

∥∥ψ(λ′�u
)∥∥2 + r(u)2� (G.16)

Then one may write L1(·) = φ(ψ�0). We then show that ψ satisfies the conditions of
Lemma 8. Note first that U and Ξ are compact. ψ is continuous and λ �→ ψ(λ�u) is the
gradient of the convex function λ �→EP [ρτ(Y −D′u−X ′λ)]. The functionL1(u)= λ0(u)

is defined as the exact solution of ψ(λ�u)= 0. Note also that, by Assumption 2,

∂2

∂θ1∂θ
′
1
QP�1(θ1� θ−1)= ∂

∂θ′
1
EP
[(

1
{
Y ≤D′θ−1 +X ′θ1

}− τ)X]

=EP
[
∂

∂θ′
1

(
FY |D�X�Z

(
D′θ−1 +X ′θ1

)− τ)X]

=EP
[
fY |D�X�Z

(
D′θ−1 +X ′θ1

)
XX ′]�

where the second equality follows from the dominated convergence theorem, and the
last display is well-defined by the square integrability ofX . Similarly,

∂2

∂θ1∂θ
′
−1
QP�1(θ1� θ−1)=EP

[
fY |D�X�Z

(
D′θ−1 +X ′θ1

)
XD′]�

Hence, the derivative

∂

∂
(
λ′�u′)Ψ(λ�u)=

(
∂2

∂θ1∂θ
′
1
QP�1(θ1� θ−1)�

∂2

∂θ1∂θ
′
−1
QP�1(θ1� θ−1)

)

exists and is continuous by Assumption 2. By Assumption 2(4), Ψ̇λ0(u)�u = ∂2

∂θ1∂θ
′
1
×

QP�1(L1(θ−1)�θ−1) obeys

inf
u∈U

inf
‖h‖=1

‖Ψ̇λ0(u)�uh‖ = inf
θ−1∈Θ−1

inf
‖h‖=1

∥∥EP[fY |D�X�Z
(
D′θ−1 +X ′θ1

)
XX ′]h∥∥> 0�
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Then, by Lemma 8 and Lemma E.2 in CFM,φ is Hadamard differentiable tangentially to
C(N × U)K × {0} with the Hadamard derivative (of L1)

φ′
Ψ�0(z�0)= −

(
∂2

∂θ1∂θ
′
1
QP�1

(
L1(·)� ·

))−1
z
(
L1(·)� ·

)
�

where (z�0) �→φ′
Ψ�0(z�0) is continuous over z ∈ �∞(Θ)K .

For j ≥ 2, the argument is similar. For example, for j = 2, one may take U = Θ−2,
Ξ =Θ2 and ψ(λ�u)= EP [(1{Y ≤D1θ2 + (D−1�X)

′u} − τ)Z1] and write L2(·)= φ(ψ�0).
The rest of the argument is the same.

Continuing with j = 1, by Lemma 10, one may write L̂j(·) = φ(ψN� rN�1) with
ψN(λ�u) = 1

N

∑N
i=1 1{Yi ≤ D′

iu + X ′
iλ}Xi and supθ−1∈Θ−1

|rN�1(θ−1)| = op(N
−1/2). By

Lemma 9 and applying the δ-method (as in Lemma E.3 in CFM), we obtain

LN(·)�W�

where W = (W′
1� � � � �W

′
J)

′ is a tight Gaussian process in �∞(Θ)dX+dD , where for each j,
Wj ∈ �∞(Θ−j)dj is given pointwise by

Wj(θ−j)= −
(

∂2

∂θj∂θ
′
j

QP�j
(
Lj(θ−j)� θ−j

))−1
Gfj

(
w;Lj(θ−j)� θ−j

)
� j = 1� � � � � J;

Hence, its covariance kernel is as given in (G.15). By Lemma 1.3.8. in Van der Vaart and
Wellner (1996), {LN} is asymptotically tight, which in turn means that {LN } is stochas-
tically equicontinuous with respect to ρ by Theorem 1.5.7 in Van der Vaart and Wellner
(1996).

(ii) For each j, let L∗
N�j ∈ �∞(Θ−j)dj be defined pointwise by

L∗
N�j(θ−j)= √

N
(
L̂∗
j (θ−j)− L̂j(θ−j)

)
�

Below, again we work with the case j = 1. Using φ (the solution to (G.16)) and applying
Lemma 10, we may write

L∗
N�1(θ−1)= √

N
(
φ
(
ψ̂∗
N� r

∗
N

)−φ(ψ̂N� rN)
)
�

where ψ̂N(λ�u) = N−1∑N
i=1(1{Yi ≤ Diu +X ′

iλ} − τ)Xi, and ψ̂∗
N is defined similarly for

the bootstrap sample. Let EP∗ denote the conditional expectation with respect to P∗,
the law of {W ∗

i }Ni=1 conditional on the sample path. Let BL1 denote the space of bounded
Lipschitz functions on R

dX with Lipschitz constant 1. Then, for any ε > 0,

sup
h∈BL1

∣∣EP∗h
(√
N
[
φ
(
ψ̂∗
N� r

∗
N

)−φ(ψ̂N� rN)
])−EP∗h

(
φ′
Ψ�0
(√
N
[(
ψ̂∗
N� r

∗
N

)− (ψ̂N� rN)
]))∣∣

≤ ε+ 2P∗(∥∥√N[φ(ψ̂∗
N� r

∗
N

)−φ(ψ̂N� rN)
]

−φ′
Ψ�0
(√
N
[(
ψ̂∗
N� r

∗
N

)− (ψ̂N� rN)
])∥∥> ε)� (G.17)
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By Lemma 9 and Theorem 3.6.2 in Van der Vaart and Wellner (1996),
√
N(ψ̂∗

N − ψ̂N)
L∗
�

Gf1. Noting that h ◦φ′
Ψ�0 ∈ BL1(�

∞(Θ−1)
dX ×R) and rN = op(N−1/2), it follows that

sup
h∈BL1

∣∣EP∗h
(
φ′
Ψ�0
(√
N
[(
ψ̂∗
N� r

∗
N

)− (ψ̂N� rN)
]))−EP∗h ◦φ′

Ψ�0(Gf1�0)
∣∣→ 0� (G.18)

with probability approaching 1 due to rN = oP(N−1/2). Hence, for the conclusion of the
theorem, it suffices to show that the second term on the right-hand side of (G.17) tends
to 0.

As shown in the proof of (i), φ is Hadamard differentiable at (ψ�0). Hence, by Theo-
rem 3.9.4 in Van der Vaart and Wellner (1996),

√
N
[
φ
(
ψ̂∗
N� r

∗
N

)−φ(ψ�0)
]=φ′

Ψ�0
(√
N
[(
ψ̂∗
N� r

∗
N

)− (ψ�0)
])+ oP∗(1)�

√
N
[
φ(ψ̂N� rN)−φ(ψ�0)

]=φ′
Ψ�0
(√
N
[
(ψ̂N� rN)− (ψ�0)

])+ oP(1)�

Take the difference of the left- and right-hand sides, respectively, and note that φ′
Ψ�0 is

linear. This implies the right-hand side of (G.17) tends to 0 in probability. This, together
with (G.17)–(G.18), ensures

L∗
N�1

L∗
�W1�

where W1(θ−1)= − ∂2

∂θ1∂θ
′
1
QP�1(L1(θ−1)�θ−1)

−1
Gfj(·;L1(θ−1)�θ−1). The analysis for any

j 
= 1 is similar, and one may apply the arguments above jointly across j = 1� � � � � J, which
yields the second claim of the lemma.

(iii) Consider the first submatrix of EP [(g(W ;θ) − EP [g(W ;θ)])(g(W ; θ̃) −
EP [g(W ; θ̃)])′]. It is given by

Var
(

−
(

∂2

∂θ1∂θ
′
1
QP�1

(
L1(θ−1)�θ−1

))−1
f1
(
w;L1(θ−1)�θ−1

))

− Var
(

−
(

∂2

∂θ1∂θ
′
1
QP�1

(
L1(θ̃−1)� θ̃−1

))−1
f1
(
w;L1(θ̃−1)� θ̃−1

))

=
(

∂2

∂θ1∂θ
′
1
QP�1

(
L1(θ−1)�θ−1

))−1
Var

(
f1
(
w;L1(θ−1)�θ−1

))

×
(

∂2

∂θ1∂θ
′
1
QP�1

(
L1(θ−1)�θ−1

))−1

−
(

∂2

∂θ1∂θ
′
1
QP�1

(
L1(θ̃−1)� θ̃−1

))−1
Var

(
f1
(
w;L1(θ̃−1)� θ̃−1

))

×
(

∂2

∂θ1∂θ
′
1
QP�1

(
L1(θ̃−1)� θ̃−1

))−1
�

Note that Θ is compact and θ−1 �→ ( ∂2

∂θ1∂θ
′
1
QP�1(L1(θ−1)�θ−1))

−1 is continuous by

Lemma 1, which implies that this map is uniformly continuous. Therefore, it remains
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to show the uniform continuity of θ �→ Var(f1(w;θ)). Note that

Var
(
f1
(
w;L1(θ−1)�θ−1

))
=EP

[(
1
{
Y ≤D′θ−1 +X ′L1(θ−1)

}− τ)XX ′]
−EP

[(
1
{
Y ≤D′θ−1 +X ′L1(θ−1)

}− τ)X]EP[(1{Y ≤D′θ−1 +X ′L1(θ−1)
}− τ)X]′�

The right-hand side of the display above is continuous on the compact domain Θ, and
hence it is uniformly continuous. One can argue the same way for the other subcompo-
nents of diag(EP [(g(W ;θ)−EP [g(W ;θ)])(g(W ; θ̃)−EP [g(W ; θ̃)])′]). This completes the
proof.

Lemma 12. Suppose that Assumptions 1 and 2 hold. (i) Let Wi = (Yi�D
′
i�X

′
i�Z

′
i)

′, i =
1� � � � �N be an i.i.d. sample generated from the IVQR model. Then

√
N(K̂ −K)�W�

(ii) Let W ∗
i = (Y ∗

i �D
∗′
i �X

∗′
i �Z

∗′
i )

′, i = 1� � � � �N be an bootstrap sample from the empirical
distribution PN of {Wi}Ni=1. Then

√
N
(
K̂∗ − K̂) L∗

�W�

Proof. (i) By Lemma 11, it follows that

√
N
(
L̂1(·)−L1(·)� � � � � L̂J(·)−LJ(·)

)′ �W�

Note that, by the definition of L̂ and L, one has

√
N
(
K̂j(θ)−Kj(θ)

)= √
N
(
L̂j(θ−j)−Lj(θ−j)

)
� j = 1� � � � � J�

The conclusion of the lemma then follows. The proof of (ii) is similar, and is therefore
omitted.

Appendix H: Consistency of the contraction estimator

Below, we adopt the framework of Dominitz and Sherman (2005). Let (X � d) be a metric
space. For a contraction map F : X → X , let cF be the modulus of contraction such that

d
(
F(x)�F

(
x′))≤ cFd

(
x�x′)�

for any x�x′ ∈ X . As discussed in Section 5 the fixed-point estimator θ̂N can be com-
puted using the sample sequential dynamical system (in (5.5)) or the following sample
simultaneous dynamical system:

θ(s+1) = K̂(θ(s))� s = 0�1�2� � � � � θ(0) given� (H.1)
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Lemma 13. Suppose Assumptions 1, 2, and 3 hold. Let θ̂N be an estimator constructed
by iterating the dynamical system in (H.1) or in (5.5) sN times, where sN ≥ − 1

2 lnN/ ln cK .
Then

θ̂N − θ∗ =Op
(
N−1/2)�

Proof. We show the result by applying Theorem 1 in Dominitz and Sherman (2005) to
the estimator obtained from the simultaneous dynamical system. The argument for the
sequential system is similar.

By Assumption 3, K is a contraction map on DK . Let θ(s) be obtained from iterat-
ing s-times the population dynamical system in (3.7). The iteration on the dynamical
system is covergent at least linearly (Bertsekas and Tsitsiklis (1989, Proposition 1.1)).
Under the condition on sN , arguing as in Dominitz and Sherman (2005, p. 842), it fol-
lows that N1/2‖θ(sN) − θ∗‖ ≤ ‖θ(0) − θ∗‖. Finally, by Lemma 12 and tightness of W,
N1/2 supθ∈DK ‖K̂(θ) − K(θ)‖ = Op(1). These imply the conditions of Theorem 1 in Do-
minitz and Sherman (2005) with δ= 1/2. The claim of the lemma then follows.
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