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Recalcitrant betas: Intraday variation in the cross-sectional
dispersion of systematic risk
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We study the temporal behavior of the cross-sectional distribution of assets’ mar-
ket exposure, or betas, using a large panel of high-frequency returns. The asymp-
totic setup has the sampling frequency of returns increasing to infinity, while
the time span of the data remains fixed, and the cross-sectional dimension of
the panel is either fixed or increasing. We derive functional limit results for the
cross-sectional distribution of betas evolving over time. We demonstrate, for con-
stituents of the S&P 500 market index, that the dispersion in betas is elevated at
the market open and gradually declines over the trading day. This intraday pattern
varies significantly over time and reacts to information shocks such as clustered
earning announcements and releases of macroeconomic news. We find that earn-
ings news increase beta dispersion while FOMC announcements have the oppo-
site effect on market betas.

KEYwoRDs. Asset pricing, cross-sectional dispersion, functional convergence,
high-frequency data, intraday variation, market beta, nonparametric inference,
systematic risk.
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1. INTRODUCTION

Measuring assets’ exposure to systematic risk, including the sensitivity to the overall
market, plays a central role in the implementation and testing of asset pricing models.
Indeed, measurement error in the estimated betas, that is, covariances of asset returns
with the systematic risk factors, can have nontrivial consequences for assessing the abil-
ity of asset pricing models to explain the cross-section of asset prices; see, for example,
Shanken (1992), Jagannathan and Wang (1998), Kan and Zhang (1999), Gospodinov, Kan,
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and Robotti (2009), and Kleibergen (2009). The standard approach of measuring betas
is based on running linear regressions using daily or lower frequency data. This requires
the use of periods spanning multiple years to control the size of measurement errors in
the estimated betas. However, asset betas change over time, and this can be crucial for
applications, that is, an asset pricing model may hold only conditionally; see, for exam-
ple, Hansen and Richard (1987).

One way to accommodate time variation in betas is to model them as functions of
observables such as firm characteristics, macro variables and systematic risk factors;
see, for exammple, Shanken (1990), Jagannathan and Wang (1996), Ferson and Harvey
(1999), Connor, Hagmann, and Linton (2012), Gagliardini, Ossola, and Scaillet (2016),
among others. An alternative nonparametric approach, following Barndorff-Nielsen and
Shephard (2004a) and Andersen, Bollerslev, Diebold, and Wu (2005a, 2005b), is to exploit
high-frequency returns. Intraday data hold the promise of attaining the identical preci-
sion, but over significantly shorter time windows. The increased liquidity in financial
markets renders this approach practically feasible; indeed, Bollerslev, Li, and Todorov
(2016) demonstrate the advantage of using high-frequency betas for cross-sectional as-
set pricing.

Prior studies using intraday data typically ignore any potential intraday variation in
betas by averaging across the trading day. They either compute beta as a ratio of the daily
integrated covariance of the asset with the systematic factor divided by the daily inte-
grated variance of the systematic factor (as in Barndorff-Nielsen and Shephard (2004a)),
or they aggregate betas estimated over local blocks (as in Mykland and Zhang (2009)
and Li, Todorov, and Tauchen (2017)) across the day. In either case, the objective is to
enhance the precision of the estimates. The premise is that intraday variation in beta
is nonexistent or that it is immaterial for asset pricing. Given the extensive evidence of
pronounced intraday variation in second-order return moments, it is natural to ask if
this assumption is empirically justified. As an illustration, in Figure 1, we plot estimates
of the market beta for two large stocks, Caterpillar (CAT) and Johnson & Johnson (JNJ),
using high-frequency returns from distinct parts of the trading day. The figure suggests
that market betas vary in a highly systematic manner. The betas of both stocks con-
verge strongly toward unity—the cross-sectional population average of market betas—
over the course of the trading day.

More generally, is the evidence for intraday variation in market betas statistically sig-
nificant in the cross-section of stocks? The goal of the current paper is to develop econo-
metric tools for answering this type of question, characterizing the pattern of intraday
variation in betas, and to provide an initial exploration of factors that may rationalize
the intraday patterns in market betas.

Figure 1 suggests that, if present, the time variation in market beta takes a particular
form, with the cross-sectional dispersion declining across the trading day. Formally, we
define the cross-sectional beta dispersion at each point in time as

1 N
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Ficure 1. Intraday variation in market betas. The betas are computed over local windows of two
hours using 3-minute return data, according to equation (5), and averaged over the full sample
of 2010-2018. The left panel represents Caterpillar and the right Johnson & Johnson.

Here, ¢t indicates the trading day, « denotes the timing within the trading day (our time
unit is one day), and N is the number of assets in the cross-section. We construct esti-
mates of DQ’K and develop the feasible limit theory needed for formal econometric in-
ference of such objects. Our measures are constructed from a panel of high-frequency
returns on a large cross-section of assets. The asymptotic setting is one in which the
mesh of the observation grid shrinks to zero while the time span of the data remains
fixed. The size of the cross-section may remain fixed or increase along with the sam-
pling frequency. In the latter case, our inference is for the cross-sectional limit of Dﬁ\fk
which, in general, is a random quantity.

We form our measure of the cross-sectional dispersion in market beta from the ratio
of a local quadratic covariation estimate for the asset and the market return divided by
a local estimate for the quadratic return variation of the market. If the size of the cross-
section grows asymptotically, then the associated limit distribution, evaluated at a fixed
and finite set of points during the trading day (as indicated by the values of «) is deter-
mined solely by the systematic risk factors in the asset returns, where we allow for an
arbitrary fixed number (unknown to the econometrician) of latent systematic risk fac-
tors beyond the market. In contrast, if the size of the cross-section remains fixed, then
the idiosyncratic risks will also impact the limit distribution of our statistic. Importantly,
however, our feasible inference procedures are valid both for a fixed or increasing N.
Moreover, the inference is conducted in a way that does not require knowledge of the
number of systematic factors in the returns or the corresponding factor loadings.

This limit result enables one to compare D{YK across a fixed set of distinct values for
k. If the dispersion changes during the day, however, it is natural to view foK as a func-
tion of k, and ask whether this function varies over time, or on days including presched-
uled macroeconomic announcements, when the information flow may differ from that
on regular trading days. To address such questions, we develop functional limit results
for DY, with DY, viewed as a function of «. This is challenging, as estimates of DY,

K
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as a function of «, is complicated due to the associated convergence not holding uni-
formly in «. Instead, we take advantage of the one-to-one mapping between a function
and its Fourier transform. This is convenient, as the Fourier transform of estimates for
foK consists of weighted sums of block estimates for the dispersion over the day, and
their limit distribution is mixed Gaussian. Furthermore, we show that the convergence
of these estimated Fourier transforms is uniform in their argument, thus delivering a
functional convergence result enabling inference about foK as a function of «.

We extend the above analysis by developing inference for the full cross-sectional dis-
tribution of betas at a given point in time. Specifically, we derive a functional limit result
for an estimate of the characteristic function of the cross-sectional market beta distribu-
tion at fixed points in time. This limit result can be used to test if there are other changes
in the cross-sectional distribution of betas, not fully captured by the cross-sectional beta
dispersion. In addition, through Fourier inversion, we may exploit this result to recover
the density of the cross-sectional beta distribution at any given point in time nonpara-
metrically (assuming of course that one exists).

We assess the finite sample performance of the new econometric tools through sim-
ulations from a model that mimics key features of the data used in our empirical study.
The Monte Carlo analysis confirms that our limit theory provides a satisfactory basis
for finite sample inference. Our empirical application is based on the constituents of
the S&P 500 index over the sample period 2010-2018. The estimated Dﬁ’K for the full
sample as well as select subsamples strongly reject the hypothesis of a constant cross-
sectional dispersion of market betas across the trading day. Consistent with Figure 1, we
find the highest beta dispersion at the market open, followed by a gradual decay dur-
ing the trading day. That is, high/low beta stocks, with betas above/below unity, tend to
have downward/upward sloping market beta trajectories across the trading day. This in-
traday pattern holds throughout the sample, with the decline of the cross-sectional beta
dispersion during the trading hours turning even more pronounced toward the latter
part of the sample.

The sharp discrepancy in the beta dispersion at the market open and market close
points to heterogeneity in the type of information the market is processing across the
trading day. Consistent with an information-based explanation, we find that the behav-
ior of DQ’K, as a function of «, changes significantly during active earnings announce-
ment weeks, around prescheduled Federal Open Market Committee (FOMC) meeting
announcements, and when the markets are hit by sudden spikes in market-based uncer-
tainty measures. In particular, clusters of company earnings releases enhance the mar-
ket beta dispersion, reflecting heightened cross-sectional heterogeneity, while macroe-
conomic and uncertainty shocks have the opposite impact, inducing a contraction in
the beta dispersion, suggesting the reaction to such news is more homogenous.

Finally, to conclude, we discuss a potential economic rationalization for the ob-
served intraday beta dispersion pattern. It is inspired by the heterogeneous response
to shifts in the relative intensity of different types of information flow. If periods of in-
tense earnings releases induce significant systematic risk due to the anticipated arrival
of new information regarding the recent economic performance of distinct sectors, re-
gions, products, and commodities, then the impact is likely to differ in the cross sec-
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tion depending on the exposure of the stocks to the fortunes of different business ac-
tivities. On the other hand, macroeconomic announcements and news updates speak
more directly to the general level of economic activity, and may be associated with a
more homogenous response, inducing the observed compression in the beta dispersion
through an effect operating primarily through the discount factor. These observations
suggest that market risk reflects different underlying factors with distinct cross-sectional
implications, that is, the market beta may contain separate components whose relative
strength varies with the economic environment.

The rest of the paper is organized as follows. Section 2 introduces the setup and no-
tation. We provide our measures of cross-sectional dispersion in market betas and de-
velop the associated feasible limit theory in Section 3. In Section 4, we develop tests for
changes in the beta dispersion measures both within and across trading days. Section 5
extends the theory by developing inference for the entire cross-sectional beta distribu-
tion. We assess the finite-sample properties of the econometric tools via simulations
in Section 6. Section 7 contains the empirical analysis and studies the impact of dis-
tinct informational shocks. Section 8 concludes and discusses potential rationales for
our findings. Assumptions, proofs, and additional evidence are collected in the Online
Supplementary Material (Andersen, Thyrsgaard, and Todorov (2021)).

2. SETUP AND NOTATION

We first introduce the basic setup. We consider a set of stocks, indexed by j=1,..., N,
whose prices are defined on some filtered probability space ({2, F, (F;)>0, P). The mar-
ket portfolio is assigned the index j = 0. The evolution of these processes is given by

t t
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where Wt(o), (I;Iv/t(j )) j=1,..,~ and B, are independent Brownian motions, the dimension

of B; is r x 1, and the rest of the Brownian motions are univariate; {01;] )} j=0,1,..,N>» a-t(o),

{ng)}j:Lm,N, {5t(j)}j=1,...,1v, and {yt(j)}j:1 ,,,,, N are processes with cadlag paths, with yfj)
being 1 x r dimensional, and the remainder are scalar-valued functions of time. Finally,
for any process Y, AY; = Y; — Y;_ denotes the size of a jump at time ¢.

The technical assumptions regarding the processes appearing in equations (1)-(2)
are provided in the Online Supplementary Material. We briefly discuss on them here.
There are two main sets of assumptions. The first (Assumption A) concerns the dynam-
ics of the stochastic processes involved in equations (1)—(2). It is largely left unrestricted,

but we impose a “smoothness in expectation” type condition that is satisfied by most
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continuous-time models used in prior work. In particular, it is satisfied, when these pro-
cesses are [td semimartingales. We also assume that the price jumps are of finite activ-
ity.1 Our second set of assumptions (Assumptions B and C) concerns the convergence in
probability of cross-sectional averages of various stochastic processes, evaluated over a
fixed time interval. These assumptions are trivially satisfied, when the cross-sectional di-
mension of the panel is bounded. If the cross-section is asymptotically increasing, they
can be verified by appealing to a law of large numbers, provided there is only weak con-
ditional cross-sectional dependence between the relevant summands. Unconditionally,
however, we do allow these quantities to exhibit strong dependence.

The specification (1)-(2) is an exact factor model for returns, albeit with the cross-
sectional jump dependence left unrestricted, and it nests many existing cross-sectional
asset pricing models. In particular, we allow for an arbitrary number of systematic fac-
tors and factor loadings that may be time-varying. Apart for the market index, the sys-
tematic factors are latent and their number r is unknown to the econometrician. Sim-
ilarly, except for regularity type conditions, the time-varying factor loadings and the
time-varying stochastic volatilities are left unrestricted. Idiosyncratic diffusive risk in
asset prices is captured by the independent Brownian motions (I/T/t(j ) j=1,..,N- Likewise,
the dependence structure of the jumps in the cross-section is also unconstrained. If as-
set price jumps have the identical beta with respect to market jumps as the diffusive
beta, B;’ ), they may be included in the inference. We do not impose this restriction,
so we eliminate returns containing (identified) jumps, when constructing our statistics.
Nonetheless, in the Online Supplementary Material, we document that including jumps
in the inference does not alter any of our qualitative empirical findings.

We focus on the evolution of the cross-sectional distribution of market betas over
time. Formally, the spot market beta is defined as a ratio of the spot diffusive covariance
between the asset and the market and the spot diffusive market variance. Denoting the
continuous part of the (predictable) quadratic variation for two semimartingales X and
Y by (X, Y)¢ (see, e.g., Section 1.4 in Jacod and Shiryaev (2003)), the market betas in the
model (1)—(2) are given by

G d<X(j),X(O))C

Y 2 .
CT X, x O teRy,j=1,...,N.

Inference for spot volatility from high-frequency data in various settings is considered
by Foster and Nelson (1996), Bandi and Phillips (2003), Fan and Wang (2008), Kris-
tensen (2010), and Liu, Liu, and Liu (2018), while inference for the covariance (and
beta) is studied in Ang and Kristensen (2012), Bibinger and Rei8 (2014), and Bibinger,
Hautsch, Malec, and Reil} (2019) among others. We build on this work and study the
cross-sectional distribution of beta and its behavior as a function of time. Of course, the
analysis that follows can be trivially extended to study the cross-sectional distribution
of factor loadings with respect to other (observable) systematic risk factors.

IThis is mainly for convenience. We suspect that our results can be extended to allow for infinite variation
jumps as well.
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3. INFERENCE FOR THE CROSS-SECTIONAL DISPERSION OF MARKET BETAS

This section introduces our cross-sectional dispersion measures for market betas and
derives an associated feasible limit theory. The inference is based on discrete observa-
tions of {X))} j=0,1,...,N atequidistant times 0, %, %, ..., T, where T refers to the time span
of our data, which is fixed throughout, the integer » denotes the number of times we
sample within a unit interval, A, = 1/n signifies the length of the sampling interval, and
the high-frequency increment of X ) is given by

)i

D i =X ity t€Np =10, j=0,1,..,N.

As noted in the Introduction, we measure time in units of one day. The notation above,
therefore, implicitly assumes that we sample at high frequency throughout the full day.
In practice, of course, the day consists of an active trading session and an overnight
period with no, or only limited, trading. We may accommodate this feature by splitting
the unit interval [¢ — 1, ¢] into a trading part [f — 1, # — 1 4+ k] and an overnight period
[t — 1 + K, t], for some & € (0, 1]. We may then assume that we utilize high-frequency
observations only during the interval [f — 1,  — 1 + k], that is, that we sampleatr — 1, t —
1+ %, o t—14 %, fort=1,..., |T]. However, to simplify notation, henceforth, we set
K = 1, so we exclude the overnight periods. It is evident that our results can be trivially
extended to allow for k < 1.

3.1 Estimates of the market beta dispersion

We start by forming estimates for the market beta dispersion at any given point in
time. In constructing our statistics, we rely on a standard truncation approach (see, e.g.,
Mancini (2001, 2009), Jacod and Protter (2012)) to eliminate the jumps in the (partially)
observed sample path of the assets. More specifically, we truncate the increments of
X% via

v AT, we(0,1/2),teN;,j=0,1,...,N.

In the Monte Carlo study and the empirical analysis we provide additional detail on the

particular choice of vﬁj,)l Exploiting the above notation, we define the sets,

AL ={lapx O vil), AL = {8 X0 < vl A X O <),

for j,I=0,1,..., N. Our statistics will be computed on these sets.

To construct an estimate for the cross-sectional dispersion of betas at a given point
in time, Dﬁ\fk, we must account for the fact that both the market beta and the asset volatil-
ities are stochastic and change over time. As a result, we construct our measures on an
interval whose length shrinks as we sample more frequently. Specifically, we use a local
window of k, high-frequency increments, for a sequence k,, satisfying

kn=n?, 0e€(0,1).
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The sets of indices for the price increments over which we compute our measures on a
given trading day is then denoted

It ={lkn] —kn+1,...,lknl},  I'=|lkn] —ky+2,...,knl}, kel0,1].

To compute market betas and their cross-sectional dispersion, we require estimates for
the quadratic (co-)variation. The continuous part of the quadratic variation for an asset
is estimated by

~(i n H .
I/IE{;I) = ’ ’ Z(A?,IX(]))Zl{AE,];Z)}’ ]’l:Oal’-"aNateN-‘r’ K€ [0; 1]

If the objective is to measure the continuous quadratic variation of asset j, it is natu-
ral toset/=jin I//\t({(l) However, for measuring beta, it makes more sense to compute
the quadratic variation and covariation used in its construction on the identical set of
increments. Of course, the jump times of a semimartingale on a finite interval are of
Lebesgue measure zero, and hence whether we set / = j or / # j makes no difference for
the asymptotic analysis that follows.

We next define a measure for the difference between the asset covariation with the

market and the market variation as follows:

1 n
2|z

@) = Dol XD a7 X0 — AR X O — A X ©)

iell

x ( ;l,ile(O) + A?,iX(O))l teNy, ke[0,1],

(,0) (,0)
(A nA }]’

1i—1

where j =1, ..., N. Note that we use a coarser frequency in the construction of 6&(2),
as we double the length of the high-frequency increments used in 682(2) compared to

those for I//\,(f(l) (the use of an even coarser grid for the covariance measure is readily ac-
commodated). The reason is twofold. First, from a theoretical perspective, the coarser
frequency avoids a potential “degeneracy.” If we were to use the identical frequency for
@(,",2(2) and f/\t({(l) then, in the absence of other systematic risk factors beyond the mar-
ket return, the leading term for the error of our estimate of the dispersion measure will
stem from the time variation in betas and stochastic volatilities over the local window.
The behavior of this error is difficult to characterize in our general nonparametric setup.
Given existing empirical evidence for multiple systematic risk factors in asset returns,
the degenerate scenario is not likely to be of practical relevance. Nonetheless, we define
our statistics such that this issue is avoided, with the cost being a slight loss of efficiency
in our estimator if the market is the sole systematic risk factor. Second, from a practi-
cal perspective, the use of a coarser frequency in 683(2) helps minimize the impact of
potential asynchroneity effects on the statistics due to the lower liquidity of individual
assets relative to the market index.?

2Asynchronicity in trading times induces a downward bias in the estimated covariances, known as
the Epps effect (Epps (1979)). A number of solutions have been proposed to deal with it; see, for exam-
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Since C(j)(2) is an estimate of (,BEQK - 1)(0-;21)2 and V(O /) is an estimate of (a-t+,<)2

our local measure of cross-sectional market beta d1sper31on D, «» 1 simply given by

t,K N Z(( V(O h) > 1{252’f)>an})7 K€ [0: 1]7 (3)

where

an < 1/log(n). 4)
Because the estimate of the beta dispersion involves division by I//\t(?(j ), which is not
bounded away from zero in finite samples, we impose a lower bound for the local esti-
mate of market variance. This bound does not have an asymptotic effect on the statistic
or its limit distribution.
It is easy to show (and it also follows from our convergence results in the next section)
that as n — oo and N — N, for some N € (0, oc], we have the following convergence in
probability under Assumption A, given in the Online Supplementary Material:

N P
DY, — DY, —0.

We note that we allow for the size of the cross-section either to remain fixed or to in-
crease as we sample more frequently. In the latter case, D « typically converges, under
suitable assumptions, to a cross-sectional limit, which may still be a random number.
Allowing for N to be finite or infinite is convenient from an empirical point of view, as
one need not take a stand on whether the cross-sectional dimension of the return panel
is sufficiently large relative to the sampling frequency to justify one finite-sample ap-
proximation versus another.

We next introduce a few measures that are used in the construction of a bias-
correction term for /D\ﬁv « as well as an estimate for its asymptotic variance. Toward this
end, we split the set Z?! into the following two “even” and “odd” subsets:

ggz{anJ —2“”_1} Lkn] —2{]{”_3}.., lkn] —2, LKHJ}, Or=1"\ &,

2 2

and define the following two measures for j=1, ..., N:

(i n .

Cile = DOLA7 XD = A7 X )AL X O1 o, (Lieoy — Legn)]s

|z - ’ ' ’ MAGT)
Kl jeln
00 _ ) . 1,
& |I”| ,EXI; {Ai,’;”)}(l“eoﬁ} Lijegr)]

ple, Hayashi and Yoshida (2005), Christensen, Kinnebrock, and Podolskij (2010), Zhang (2011), Barndorff-
Nielsen, Hansen, Lunde, and Shephard (2011), Bibinger (2011, 2012), Varneskov (2016), Koike (2016), and
recently Bandi, Pirino, and René (2017). As we show in the Online Supplementary Material, however, for
the frequency used in our empirical analysis, the effect of asynchronicity in trading times for the stocks and
market index is negligible, and it has no impact on our empirical findings.
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The motivation behind these definitions of the two statistics is as follows. By subtract-
ing consecutive summands in (:’t(’,z and Iz(g’ ), we cancel their (conditional) mean which,
although random, is locally constant (i.e., approximately constant over the short time
window over which 6&:(2) and I//\[(?(j ) are computed). After this centering, the consecu-
tive summands are approximately independent and possess a symmetric distribution.
Therefore, Cv’t(],i and I7t(?<j ) can be used to measure the variability in 6;}2(2) and 12(21 ).
This is very convenient for our setup, in which the size of the cross-section N can in-
crease to infinity asymptotically, as we avoid estimation of the additional systematic
factors driving the asset returns as well as the loadings on them. Similarly, we do not
need to make an assumption or impose a bound on the number of systematic factors
driving the returns, which is typically the case when making inference for factor models.

This approach of computing the asymptotic variance is reminiscent of the so-called
observed asymptotic variance, proposed recently by Mykland and Zhang (2017), al-
though there are a couple of nontrivial differences. First, in our setting N may be asymp-
totically increasing, which complicates matters, because of the (unknown) factor struc-
ture in the returns. Second, we use statistics from “even” and “odd” increments in gen-
erating the “observed asymptotic variance,” unlike Mykland and Zhang (2017), who use
successive blocks. Our procedure, therefore, generates less of a bias in situations where
the estimand may vary across the local block (which will be the case for our dispersion
measures).

Finally, in the construction of the bias-correction term as well as the asymptotic vari-
ance, we need a local estimate of the market betas. We use the following:

> oArxDAr xO1 (AGD)
i ieZn ! .
/B\g,]i: n (02 ) ]=17'--’N7 6)
Z (At,iX ) 1{_,4(/30)}

ti
— ,
ieln

N

and note that, as in the construction of l’)\t,K,

we could use a coarser frequency for com-
puting the covariation in the numerator. An estimate for the sample variance of ﬂt’ ,)< i

given by

S

Z [(A?,iX(O))Z(A?,iX(j) - B\;{;AZiX(O))Zl{Agf’.“)}]
Vﬁ = 5 j=1,...,N.

2
2
(Z (87.X7) 1{A£,’}°)}>

ielh

The nonlinear transformation of 6;32(2) and 17,(2] ) in the construction of the dispersion

measure ﬁﬁ’K introduces an (upward) bias of asymptotic order O,(1/ k). It may be esti-
mated via
N 2 2_ oW
B ([P @ )
e 77(0.)))2 LK O N2 NTERS |V > an) )
N j=1 (I/Z,K] ) 2(Vt,r<] ) e =8
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N

EgK provides an estimate of the second-order terms in the Taylor expansion of 5,,K,

viewed as a function of 6t(f,2(2) and 17,(2/ ). These terms, in turn, depend on the variance
of 6}”2(2) and 12(2’ ), which we estimate using 17521 ) and ét(],z Because of the different
frequency used in computing 6&(2) and 12(2’ ), we need to weight I%(gj ) and Ct(’,z ap-
propriately to account for the different contribution to the bias term of, on the other
hand, W©, and, on the one hand, B and {W )} j=1,...N» relative to the case where we rely
on the identical frequency in constructing the measures.

Finally, our estimator of the asymptotic variance of /D\ﬁv « is given by

3(1 Y [2(“,,’2—1)

Avar(ﬁgK) =5 (ﬁ Z

j=1

N o) 2 2

+1 lz 2Bl —1) pON

2\NZ=L pO» L P ey )
Jj= K

2
A7) 20 >(0,7)
I//\(O’j) (Ct,K - (:Bt,K - 1)I/Z,K )1{ﬁzfgaf)>an}i|>
t,K

The discussion regarding the weights assigned to 17[(2] ) and Cv't(],z in the construction of

the bias terms above apply here for the construction of 1@(5% ) aswell.

3.2 Feasible limit theory

This section presents our limit results for the market beta dispersion statistic.

3.2.1 Finite dimensional convergence We start with a feasible Central Limit Theorem

(CLT) for 5§YK across different fixed points in time. In the theorems below, £7 denotes
stable convergence in law, implying importantly, that the convergence holds jointly with
any F-measurable random variable; see, for example, Jacod and Shiryaev (2003).

THEOREM 1. Suppose Assumptions A and B hold. Let n — oo and N — N, for N € (0, oc],
with w € (3/8,1/2), 0 € (0,1/2) and o > 2 — 4w. For K an arbitrary finite set of points in
[0, 1], and T a finite set of positive integers in [0, T, we have

NN nN N
DZ,K_Bt,K_Dt,K L—s
— {Z[,K}IGT,KGIC7

@(ﬁ{\/}() }teT,KeIC

where{Z; }ieT «ek IS a sequence of independent standard normal random variables de-
fined on an extension of the original probability space and independent of F.

The limiting result above holds both when N is fixed and when it increases to infinity
asymptotically. There is no restriction on the relative growth of the sampling frequency
and the size of the cross-section in Theorem 1. The asymptotic distribution of ll)\ﬁv « isde-
termined solely by the systematic factors in the asset returns when N — oo. This is be-
cause systematic risk, unlike idiosyncratic risk, is not averaged out in a cross-sectional
aggregation. On the other hand, when N is fixed, both systematic and idiosyncratic risks
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determine the limit distribution of ﬁfv «- Importantly, the econometrician does not need
to take a stand on which of the two asymptotic setups (N fixed or asymptotically increas-
ing) is at work. Similarly, there is no need to estimate or impose a known upper bound
on the number of systematic risk factors in the inference.

The asymptotic variance estimator, Avar(ﬁff,(), is of order O,(1/k,), which implies
that the rate of convergence of ﬁﬁ\,’K is +/k,. In addition, the limit distribution of ’D\ﬁ\fK
is mixed Gaussian, as the probability limit of knAT\Er(ﬁﬁYK), in general, will be a ran-
dom variable. Finally, the dispersion measures computed at distinct points in time are
asymptotically F-conditionally independent.

We remind the reader that the bias-correction term §ZK is of order O,(1/k,) and
since the rate of convergence in Theorem 1 is +/k,, this CLT result will continue to
hold even if we do not bias-correct. That said, from a practical point of view, the bias-
correction term is important, particularly in applications in which k,, is relatively small.

As with other applications involving truncation-based estimates of volatility func-
tionals, it is optimal to pick the truncation parameter w near 1/2. When we do this, our
restriction for the block size is very weak, suggesting a feasible CLT result will apply for a
wide range of k,. Of course, the bigger the (asymptotic) block size, the faster the rate of
convergence for the dispersion measure lA)ﬁv K.

We conclude this section with a comment regarding a possible extension of the
above result. Our model setup allows for latent systematic factors that are orthogonal—
in a martingale sense— to X(©. Thus, 8¢’ is the local sensitivity at time ¢ of X with
respect to the diffusive shocks in X*). We can also consider inference for local sensitiv-
ities of X ) toward the diffusive shocks in X () after controlling for exposure to a vector
of observable factors. More specifically, suppose that there is an additional vector Y of
observable systematic factors, which are orthogonal to the shocks in the latent vector
of Brownian motions B, but may interact with X (), In this case, instead of the quan-
tity (d(X @, XxOyey=1g(x ) x )¢ which we focus on here, one may also be interested
in the first element of the vector (d(Z, Z)¢)~'d(Z, X1)¢, where Z, = (X", Y,)T. This
quantity can be estimated at time ¢ + k using exactly the same procedure as above,
but with the increments A7 X© replaced by A7 XO = A7 X — [ ALY, where
Nt = (EtY)—lzﬁY’“), 3Y is the spot diffusive variance matrix of Y and 25 Y0 s the spot dif-
fusive covariance between Y and X©. The CLT of Theorem 1 will obviously still apply
for this estimator. Of course, such an estimator is infeasible, because 7, is unobserv-
able. However, this quantity is easy to estimate via linear regression on the basis of the
truncated increments:

-1
M= (Z AZiYA’Z,-YTl{|A;’,iY|<aA7}>

iell
n n 0)
x Y ALYALX DL a0 vy canpriar xO<asp)-
iell

To derive the CLT for the feasible estimator of the market beta dispersion in this mod-
ified setting, one may utilize the Delta method and a joint CLT for the infeasible dis-
persion, defined on the basis of A” . X® and N« — N4« This is relatively easy to do,
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replicating the exact steps in the proof of Theorem 1. We defer from a detailed discus-
sion here, as it requires introducing a fair amount of additional notation. Moreover, the
market factor plays a pivotal role in theory while, empirically, standard observable fac-
tors tend to be only weakly correlated with the market portfolio.

3.2.2 Functional convergence Theorem 1 enables us to formally compare the cross-
sectional market beta dispersion across different days as well as different times within
the trading day. However, if the dispersion changes during the day, it is natural to study
the behavior of 5{YK as a function of its time-of-day argument, k. For this purpose, we
now develop a functional convergence result for 5?,’,(.

Using the one-to-one mapping between a function (in L;) and its Fourier trans-
form, we can characterize the behavior of the dispersion function during the trading day
through its Fourier transform. Therefore, we introduce a family of functions to weight
the dispersion measure across the different times of the trading day and analyze the as-
sociated functional convergence of the weighted dispersions within a family of weight
functions. More specifically, suppose for every u € U, where I/ is a compact subset of R,
that we have a weight function w,, : [0, 1] — C. We then define our weighted (complex-
valued) total dispersion measures via

n
Y wu(iA)(DY,y —BYNy ), teNjuell

__ 1
DY (u) =
n= i=kn

kn+1
The measure Tbi\/(u) is a consistent estimator of
1
TDN (u) =/0 wu(K)DN dk, teNy uel,

that is, bev( u) — TD{V (u) = 0p(1) uniformly in u € Y. The following theorem states the
CLT associated with this convergence in probability.

THEOREM 2. Suppose Assumptions A and B hold and, in addition, that the family of
complex-valued functions (w,(z))yeu satisfies |w,(z) — wy(2)| < K|lu — v| and |w,(z) —
wy,(w)| <K|z—w| forallu,v e, whereld € R is a compact set, z, w € [0, 1], and K > 0 is
a constant. Letn — oo and N — N for N € (0, oo), with w € (3/8,1/2), 0 € (1/3,1/2), and
0 >2—4w. Fort e Ny N[0, T], we have

=k + 1(TDY () — TDY () £=2 Z,(w), ©6)

where the above convergence is for u-indexed processes under the uniform metric, and
further Z,(u) is a complex-valued process, defined on an extension of the original proba-
bility space, which is F-conditionally a centered Gaussian process on U with covariance
and relation functions given by

E(Z(wZi(v)) =3i(u,v)= plim ft(u,v), foru,vel,

N—N,n—00

E(Z(w)Z:() = Ei(u,v) = plim  Z(u,v), foru,vel,

N—N,n—o00
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where

(Avar(b\ﬁ\,](ivk,,)An) + Avar(ﬁ f,]((wkn)/\nmn))
2 9

=) kn Z N N—T
N ) = Y w (@)
" i=1

(Avar(ﬁﬁ\,[(ivk,,)An) + AVar@ﬁY((ﬁk,,)m)A,,))
2 b

= k N —
Hi(u,v) = ﬁ ; wy, (1)@l (1)

with
1
wu((l+])An)’ i::l"">kna

n—1 (7
ou((i+)DA), i=kn+1,...,n,

>v|
= —
N~

| ©

(i) =

=
NN
=)

j:
and, in the above, we set w,(s) =0 for s > 1. We further have

o~ P = — P
sup |3 (u,v) — 3;(u, v)| — 0, sup |5 (u, v) — 5(u,v)| — 0.
u,veld u,veld

Moreover, for T a finite set of positive integers in [0, T1, the above convergence in law holds
jointlyfort € T, with Z;(u) and Z;(u) being F -conditionally independent for s, t € T with
S#E L.

This convergence result is in the space of continuous functions on a compact inter-
val, equipped with the uniform topology. Alternatively, we could have stated a functional
convergence result for functions taking values in a weighted L, space. However, since
the functions of interest (mainly, Dﬁ\fK as functions of «) are defined on the bounded in-
terval [0, 1], it is enough to look at their Fourier transforms only on a compact interval
including zero for their analysis.

We further note that the convergence rate of fbﬁv(u) is faster than that of DV

LK
namely \/n versus v/k,. This is because, in the case of fbﬁv(u), the errors in measuring
dispersion on the entire unit interval are averaged out, which enhances the convergence
rate. As a consequence, the requirement on the local window k,,, that is, the restriction
on o, is now much stricter relative to the one needed for Theorem 1. Nevertheless, o
can still take values in a range without impacting the CLT result in Theorem 2, which is
a desirable feature for practical applications. We note also here that, unlike the case of
Theorem 1, the bias-correction is unavoidable, because the bias term of the statistic is
of order O,(1/k,), while the rate of convergence in equation (6) is \/z (and recall that
kn/+/n— 0because o < 1/2).

4. TESTS FOR CROSS-SECTIONAL DISPERSION IN MARKET BETAS

We now exploit the limit results in the previous section to design tests for hypotheses
regarding the beta dispersion. We assume that the limit of Dﬁ\fK exists, as the size of the
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cross-section N converges to N, for N either a finite number or infinity. We denote this
limit by

D= pllmD
N—>N

teN;,ke[0,1],

t,k>

and further define
1
TD;(L!):/ (J)u(K)D[’KdK, t€N+,u€Z/{.
0

We will apply our theorems by averaging the dispersion measures across trading
days. Toward this end, we introduce the notation,

DNK ZDIK’ DNK ZDZ;U DT,K:ZDt,lu

teT teT teT
for 7 being a finite set of integers in [0, T]. We define similarly @]fx(u), TD#(u), and
TD7(u).

4.1 Tests for intraday variation in dispersion

We start by designing tests for determining whether the market beta dispersion varies
across the trading day. Specifically, we introduce the set

O7(k, k) ={w: D7 =D7 0}, Kk €[0,1],k #K'.

We then seek to test whether the sample path belongs to 27 (k, ') or its compliment.
For that purpose, we propose a test statistic with the following critical region:

DY .~ BY .~ DY . +BY
Cn:{ ,/\ - >Zl—a/2}’ a€(0)1)9
Z Avar DN —i—Avar(/D\ffK,))
teT

where z, is the a-quantile of the standard normal distribution. Then, from Theorem 1,
we have

P(Cal27(k, k') = , P(Cn| 027 (k, K’)C) — 1,

provided

{(DN’K _ DT,K _ D#,K/ +DT,K/)1(‘QT(K’ K/)) = Op(l/m)a (8)

(DY« = D1« — DY o + D1,0) (27 (k, K')) = 0,(1).

The above condition obviously holds, when N is finite. When N is infinite, the second
part of equation (8) typically follows by invoking a law of large numbers for N — oo. For
the first part of equation (8) with an asymptotically increasing N, we require the given
rate of convergence for the above-mentioned cross-sectional law of large numbers, and
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we need N to grow sufficiently fast relative to k. Alternatively, this condition automat-
ically holds without restrictions on the relative size of the two dimensions of the return
panel, if the market betas are assumed constant across the trading day (recall these as-
sumptions concern only the null hypothesis).

4.2 Tests for functional variation in dispersion

We now go on to derive a test for variation in D; . (as a function of «) across different
trading days. Specifically, we are interested in deciding whether the sample path belongs
to the following subset of the sample space:

Q(Taﬁ)z{w:D7'1,K=D7'2,K7K_a'e'}3 7]075:@7

where 77 and 7; are two disjoint sets of integers in [0, T'].
As for the previous test, we need a condition for the asymptotic size of the difference
Dﬁ\,’K — D, which, in the current setting, takes the form

sup |[DY = D7 = DY+ D75 [ LTI, T2) = 0,(+/An),

ke[0,1] N N . (9)
SI[t)pl]|D7-l’K — D7« — D7, + D75 | L(2(T1, T2)) = 0, (1).
kel0,

Similar comments to the ones following equation (8) apply here as well. In particular,
the first of the above conditions hold, whenever a functional CLT for D?f «» as a function
of k, with N — oo applies, and N is sufficiently large relative to » (depending on the rate
of convergence of this cross-sectional CLT). Alternatively, this condition holds without
any restriction on N, if,BEﬂr)K = ,BEQK, fors,teT,ke[0,1],andj=1,...,N.

For constructing the critical region of the test, we exploit the following corollary to
Theorem 2.

COROLLARY 1. Assume the conditions of Theorem 2 hold for T = T, U T, where T; and T,
are disjoint sets of integers in [0, T]. Let w,(z) = ei”z,for u el =[0,U], andU is a positive
constant.

(@) If D73« = D73, a.e. for k € [0, 1], and condition (9) holds, then

Y Ziwy =Y Zi(w

teTq teT,

Vn—k,+1 sup|Tb]7\g(u) - TB%(LM £ sup
ueld ueld

>

where the limiting process Z;(u) is defined in Theorem 2.
(D) If D7, «« # D3« fOr k in a set of positive Lebesgue measure, then

sup| T D, (u) — TD7;(u)| > 0.
ueld
Part (a) of the above corollary characterizes the asymptotic behavior of TB% (u) —

Tb%(u) under the null hypothesis. Part (b) shows that for determining whether D,
differs from D7; , (as a function of «), we only need to look at the difference between
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their Fourier transforms for u on a compact subset of R containing zero. This result fol-
lows from Bierens (1982); see also Bierens and Ploberger (1997). Given Corollary 1, we
propose a test with the following critical region:

Cn = {Vn=ky+ Tsup| TD7, () = TD7,(0)| > Ziap}s @€ (0, 1),
ueld

where Z, is the a-quantile of a centered Gaussian process on ¢/ with covariance and
relation functions given by ZIETI T3 Zt( u,v) and Z,EFE uTs 2 E:(u, v), respectively. We note
that Z, may be computed easily via simulation. From Corollary 1, it follows, provided
condition (9) holds that

PCul2(T1, T2)) = @, P(CalQ(T1, T2)°) — 1

Finally, we observe that a number of suitable substitutions within the above test en-
ables us to test the hypothesis that the market beta dispersion, as a function of the time
within the trading day, has a particular parametric representation. Specifically, we must
replace D, . by some function D,. on [0, 1], substitute fol e, D, dk for TB% (u), and set
T2 =, thus obtaining a test for the hypothesis D7, , = D for k € [0, 1].

5. INFERENCE FOR THE CROSS-SECTIONAL DISTRIBUTION OF MARKET BETA

We finish the theoretical analysis by proposing an estimator for the cross-sectional dis-
tribution of market betas and providing the associated limit theory. Hitherto, we have
focused on the cross-sectional dispersion of market betas. However, as we now show,
we can extend this analysis to study the entire distribution. We will do this by estimat-
ing the characteristic function of the cross-sectional beta distribution at a given point in
time. The associated convergence result, presented below, is functional and takes place
in the complex-valued Hilbert space £*(w),

Lz(w)z{f:R—><C|/yf(u)\zw(u)dumo}, (10)
R

where w is some positive-valued and continuous weight function with exponential tail
decay. The inner product on £%(w) is induced from the inner products of its real and
imaginary parts, that is, for f and g two elements of £2(w), we set

(f,8) = /R f(2)g(z)w(z)dz.

Next, for a random complex function X taking values in £2(w), we introduce the co-
variance operator Kh = E[(X — E(X)){(h, X — E(X))], and the relation operator Ch =
E[(X —E(X))(h, X — E(X))], where & € £2(w). We recall that a Gaussian law on £%(w) is
uniquely identified by the mean, covariance and relation operators. We refer to this law
asCN(u, K, C), for u being the mean, K being the covariance, and C being the relation
operator.
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Our estimator of the characteristic functiqn of the cross-sectional distribution of
market beta can be easily constructed from C\’)(2) and ;%" in the following manner:

5 1 N (€))
. JK

ﬁt,K(u)ZN Elexp<zu =07 + u), ueRkR,
j= t,K

where we remind the reader that 6,(1,3

theorem provides the CLT for Efa ()3

(2) is an estimate of (BEQK - 1)(0}21()2. The next

THEOREM 3. Suppose Assumptions A and C hold. Let n — oo and N — N, for N € (0, oc],
with w € (3/8,1/2), 0 € (0,1/2), and ¢ > 2 — 4w. Then, fort e N. N[0, T] and « € [0, 1],
we have

N
1 ; _
VEn (zszw) -5 ﬁexp(iuﬁi&)) Sz,
=1

where Z; . is F-conditionally CN (0, K;,«, Cy,«), and the operators K; . and C; . are given
by

Kz,Kh(Z)=f ki k(z, uyh(u)w(u) du,
R
Cich(z) = / ¢z, whyww)du, Yhe L2(w),
R
with the functions k;,(z, u) and ¢ (z, u) given in Assumption C.

The above result is most useful in the case when N — oo, and there is a continuum
of assets that we draw from randomly, as in Gagliardini, O_ssola, and Scaillet (2016) (see
also the references therein).* In this case, % Zf’zl exp(iuﬁﬁﬂr),() is an estimate of the char-
acteristic function of the market beta distribution at time ¢ + . Thus, using a feasible
version of Theorem 3, we can conduct formal inference for the cross-sectional distribu-
tion of market betas at a given point (or fixed points) in time. In particular, we can test
for whether the entire cross-sectional beta distribution changes during a trading day or
across trading days. In addition, we can estimate the density of the cross-sectional beta
distribution at time ¢ — 1 + «, denoted by ff (x) (assuming it exists), via Fourier inver-
sion,

1 [
ff,((x) / e_’“xZ\EK(u)du,

27 J_y,

for some positive sequence u,, — co as n — oo.

3Similar to our dispersion measure, 5{YK, we can also bias-correct EE (). However, such bias-correction
is not needed for the limit result in Theorem 3 and in order to keep the analysis simple, we do not do this
here.

4If market betas depend on observable firm characteristics, one can also estimate beta distribution con-
ditional on such observables.
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Finally, as for the analysis of the dispersion, we can construct cross-sectional mo-
ments of temporally aggregated estimates for betas. Specifically, for 7 a set of integers
in [0, T'], we can define

N aif)l
1 1 Cl(2)
=B _ . t,K .
ET,K(”)— N E exp(zu—|7_| E 507 —Hu),
j=1 teT Ytk

(1D

1 Un .
=5 [T

2m —Un

A functional CLT result for Z‘% (1), analogous to the one in Theorem 3, may be obtained
here as well. For brevity, we do not state it explicitly.

6. SIMULATION STUDY

We now assess the finite sample properties of the new inference procedures. To this
end, we conduct a Monte Carlo study in which we vary the sampling frequency, window
length, and number of assets in the cross section. The analysis is based on simulation
from the following affine jump-diffusion model for the return on the market and each of
the N assets,

dx" = V,aw® + z,dan,, Vi=v" +v?,
av? =ki(0-V")dt+ £0/VV dBP, i=1,2,
dX” =BV W + Vi + B ZedN,,  j=1,...N,

where BO, B@ w O jy® N are independent standard Brownian motions, N;
is a Poisson process with intensity per unit of time of A; capturing the arrival of market
jumps with size given by an i.i.d. sequence (Z;),->1, with Z; ~ N(0, 0']2). The parameters
are identical to those in Bollerslev and Todorov (2011),

(k1, k2, 0, &1, €2, A, UJZ) = (0.0128, 0.6930, 0.4068, 0.0954, 0.7023, 0.2, 0.932).

Given our objectives, we calibrate the specification for the intraday variation of beta
carefully. The market betas obey the following dynamics:

] —() .
P =pun(B”), j=1,...,N,teRy, (12)
where E(j is drawn from,

BY " uniform(10.5,1.51), j=1,...,N, (13)
and the function ¢ is given by

Pre(X)=x+¢, (x—1), 1eN;, ke[0,1], xR, (14)
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FiGure 2. The functions {E,(f)}i:l,z,3 used in the Monte Carlo. The figure plots Ef(]) (solid line),
E,(f) (dashed line) and Ef) (dashed-dotted line) used in computing the different beta functions

according to equations (13)—(14) in the various Monte Carlo setups detailed in the text.

for some smooth function of ¢ and «, Et’K: N4 x [0, 1] — R. We use three functions,

{Jf)}i:1,2,3, which depend only on « € [0, 1], for ¢, .. The first, E,((l), is a constant, cho-
sen so thatif §y, , = JS), then E( ,ng ) 1)2 equals the average daily estimate for the dis-

. . —2 — —2
persion of the market betas observed in our data. Next, we set l,[ff( ), so that ¢, , = ¢ff< )

implies a value for E( ng ) —1)2 that matches the average dispersion of the market betas

. . . . —@3) . . .
as a function of time-of-day in our data. Finally, zpf( ) is calibrated in an analogous way

to Jf) , with the difference being that the implied E( B;j ) — 1) now matches the average
dispersion of the market betas as a function of time-of-day observed in our data only on
days with low volatility. For the latter, we find that the beta dispersion as a function of
the time-of-day appears to differ substantially from that computed on the other days in
the sample. The three functions {J,(:)}i:uﬁ are displayed in Figure 2.

We fix the various tuning parameters for the statistics with a view toward our em-
pirical application. Throughout, we set |7| = 65 or |7| = 250 (this applies also to the
size of the sets 71 and 7, when performing tests across trading days), correspond-
ing to averaging across a period of 1 quarter or 1 year. The truncation level is set at
v§f,§ =4 BthfBA%“g, j=0,...,N, where BVISQ is the so-called bipower variation of as-
set j, given by BVtS{l) =32 i IAT X (/')||Afy .1 X|, which is a nonparametric estimate
of daily integrated volatility; see Barndorff-Nielsen and Shephard (2004b). Finally, we
set a, = Qp.1(BV)/log(n) (recall equations (3)-(4)), where Qg 1(BV) is the 10th quantile
of the empirical distribution of BV (.

We begin by studying the finite-sample properties of the test for equal cross-
sectional dispersion in betas during parts of the trading day, given in Section 4.1. The
empirical rejection rates of the test under the null hypothesis are provided in Table 1,
while those under alternative hypotheses are reported in Table 2. The results in Table 1
point to a satisfactory behavior of the test under the null hypothesis, with the empirical
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TaBLE 1. Monte Carlo results: test for constant beta dispersion across the trading day under the
null hypothesis (12)-(14) with ¢, , = ES). The table reports empirical rejection rates of the test
in Section 4.1 for nominal size 0.05 and 0.10, using 1000 simulations. The time windows for the
test are the first and last 2 hours of the trading day.

a=0.05 a=0.1
n\N 100 300 500 100 300 500
|T| =65 days
390 0.054 0.073 0.065 0.106 0.121 0.117
120 0.068 0.056 0.065 0.121 0.110 0.121
78 0.073 0.056 0.069 0.122 0.111 0.125
|T| =250 days
390 0.058 0.062 0.053 0.115 0.115 0.107
120 0.053 0.070 0.061 0.104 0.141 0.114
78 0.075 0.065 0.062 0.135 0.119 0.120

rejection rates being very close to its nominal size. This holds true for all the different
values of n, |T|, and N that we consider.

Turning to our ability to detect intraday variation in market beta, Table 2 shows that
our test has excellent power properties against the given alternative (we consider equa-
tion (14) with ¢, , = Jf) as our alternative). This holds true even for the scenario in
which we average the dispersion statistic over the smallest of our choices for |71, 65
trading days. As expected, the power of the test is somewhat lower when comparing the
cross-sectional dispersion not at the market open, but rather at lunch, versus the market
close. This is because the discrepancy in D, , between the two points within the trading
day now is decidedly smaller; see Figure 2.

Next, we explore the properties of the functional test for variation in dispersion, de-
veloped in Section 4.2. We implement it with &/ = 27 and discretize the domain using

TABLE 2. Monte Carlo results: test for constant beta dispersion across the trading day under the
alternative hypothesis (12)-(14) with Ez,« = Ef). The table reports empirical rejection rates of
the test in Section 4.1 for nominal size 0.05 using 1000 simulations. The time windows in the test
are: open (first 2 hours), lunch (11am-1pm) and close (last 2 hours).

65 days 250 days
n\N 100 300 500 100 300 500
open versus close
390 1.000 1.000 1.000 1.000 1.000 1.000
120 1.000 1.000 1.000 1.000 1.000 1.000
78 1.000 1.000 1.000 1.000 1.000 1.000
lunch versus close
390 1.000 1.000 1.000 1.000 1.000 1.000
120 0.990 0.991 0.993 1.000 1.000 1.000

78 0.839 0.854 0.845 1.000 1.000 1.000
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TaBLE 3. Monte Carlo results: test for constant dispersion of betas across time under the null
hypothesis (12)-(14) with ¢, , = ng,z The table reports empirical rejection rates of the test in
Section 4.2 of nominal size 0.05 (first three columns) and 0.1 (last three columns) using 1000

simulations.

a=0.05 a=0.1
n\N 100 300 500 100 300 500

— —2
By=Upm T=65

LK

390 0.048 0.055 0.055 0.103 0.112 0.104

120 0.051 0.056 0.055 0.104 0.102 0.100

78 0.044 0.060 0.068 0.100 0.111 0.109
J[,K :_5,22’ T =250

390 0.066 0.063 0.056 0.116 0.117 0.111

120 0.065 0.082 0.070 0.122 0.147 0.132

78 0.074 0.070 0.055 0.127 0.131 0.118

increments of 7/3 (i.e., u € {0, w/3,2m/3, ..., 27}). The critical test values are obtained
from the procedure outlined in Section 4.2 with 10,000 simulations. Table 3 provides re-
sults under the null hypothesis, ¢, , = Jff). We notice a slight overrejection for 7' = 250
and low values of n. Overall, however, the test has empirical rejections rates under the
null hypothesis close to the corresponding nominal size.

To examine the power of the test, we set ¢, , = g[;f(z) forte 7 andlet ¢, = 1[/53) for
t € T,. Results for this simulation scenario are given in Table 4 and reveal good power.
Not surprisingly, the power improves as the sampling frequency increases. We further
note that the rejection rates appear insensitive to the choice of N (the size of the cross-
section).

7. EMPIRICAL EVIDENCE ON THE INTRADAY BETA DISPERSION

We now use our newly developed econometric tools to explore the intraday behavior
of market betas. The analysis uses high-frequency returns on the constituents of the
S&P 500 market index, and our market proxy is the SPY ETF on the S&P 500 index. Each

TABLE 4. Monte Carlo results: test for constant beta dispersion over time under the alternative
hypothesis. The table reports empirical rejection rates of the test of Section 4.2 for nominal size

0.05 using 1000 simulations. The testing is based on two blocks with J,’K = Ef) for t <65 (¢ <250)
and ¢, , = Ef) for t > 65 (¢t > 250) for the first (last) three columns.

a=0.05 a=0.1
n\N 100 300 500 100 300 500
390 1.000 1.000 1.000 1.000 1.000 1.000
120 0.889 0.878 0.873 1.000 1.000 1.000

78 0.601 0.593 0.579 0.991 0.989 0.993
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trading day, we sample the asset prices every 3 minutes. We exclude the first half hour
of trading to avoid any potential issues associated with market opening. This leaves us
with 120 returns per day for each asset. We remove days with partial trading. Overall, the
sample contains 2243 full trading days over 2010-2018.

For most of our illustrations, we retain only stocks belonging to the index for the en-
tire sample period, which results in a cross-section of 335 stocks. This choice alleviates
the concern that our comparisons are influenced by substantial shifts in the compo-
sition of the underlying stocks. However, this procedure does introduce an element of
survivorship bias. Hence, for some parts of the analysis, we rely on all stocks available in
the index over shorter windows. In all cases, the qualitative results are not impacted by
these choices.

7.1 Unconditional properties

First, we compute the dispersion measure averaged across the entire sample,
% Zthl D\ﬁ\”,{. The function is plotted in the left panel of Figure 3. It shows that the cross-
sectional dispersion of the market betas declines monotonically over the trading day.
The reduction is substantial: the dispersion at the market close is less than half of its
value at the open. This is consistent with the illustrative plot for the two representative
stocks in Figure 1 of the introductory Section 1. We can formally test whether the cross-
sectional dispersion in market betas is invariant across the trading day using the proce-
dures developed in Section 4.1. A natural concern in such comparisons is the potential
impact of confounding effects arising from excessive noise in the beta estimates due to
the high idiosyncratic volatility, especially at the market open. However, our tests are
explicitly designed to account for such features, and they retain power to discriminate
between the scenarios involving idiosyncratic noise versus true changes in the distribu-
tion of market betas. Given the pronounced patterns observed, it is not surprising that
our tests overwhelmingly reject the null hypothesis of equal intraday beta dispersion,
with p-values below 0.0001, or 0.01%.

The evidence from the left panel of Figure 3 suggests that high market beta stocks
(in excess of unity) tend to have declining betas throughout the trading day, while the
opposite is true for low beta stocks. This conjecture is confirmed in the right panel of
Figure 3. It plots the cross-sectional quantiles of the market betas across the trading day.
The changes for the two extreme quantiles (the 10’th and 90’th) are most significant,
while the median market beta displays little variation over the trading day. To explore
whether this intraday pattern in market betas is robust, we repeated the analysis for 2-
year subsamples. The finding of a declining cross-sectional dispersion in market betas
over the trading day remains intact, with the evidence, if anything, strengthening in the
second half of the sample. For brevity, we do not report these results here.

As explained in Section 5, we may also estimate the full density for the cross-
sectional distribution of the market betas aggregated across time, using the Fourier in-
version approach in equation (11). We apply this procedure to the averaged density es-
timates for the cross-sectional distribution of the market betas at the open and close
of trading. Figure 4 reveals that the two distributions are very different, with the former
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F1Gure 3. Cross-sectional distribution of market betas across the trading day. The left panel dis-
plays the cross-sectional dispersion in market betas and the right panel plots the corresponding
quantiles. All quantities are treated as functions of the trading day and computed by averaging
over the entire sample. The selected quantiles are: 10th, 25th, 50th, 75th, and 90th.

having a significantly wider support than the latter, even if both have modes close to
unity.

A potential concern regarding the reported evidence is that the documented in-
traday pattern may be linked to imprecision or instability in the estimates of high-
frequency market betas due to a lack of liquidity for the smaller stocks in our sample.
This could bias our intraday pattern if the small firms are concentrated in specific beta
quantiles, and liquidity shifts across the trading day. To address this concern, in Table 5,
we report the relative number of firms belonging to each five-by-five quintile for market
open beta and firm size, averaged across the full sample. The results in the table reveal
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FIGURE 4. Cross-sectional distribution of market betas at open and close of trading. The plot
displays f;@ (x) using the first two hours of trading (solid line) and the last 2 hours of trading
(dashed liné), both computed over the entire sample. The tuning parameter u, in the Fourier
inversion is set to inf{0 < u : |£B ’K(u)| < 0.0005}.
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TaBLE 5. Joint distribution of beta and size. The table reports the joint distribution of betas at
the open and the size of the firms. For each day, firms are split into 5 bins based on both their beta
and size. The table reports the time-series average share of firms that belong to a given size-beta
bin.

BETA
Size 1 (low) 2 3 4 5 (high)
1 (small) 0.0346 0.0364 0.0391 0.0422 0.0479
2 0.0415 0.0377 0.0377 0.0396 0.0440
3 0.0457 0.0414 0.0394 0.0383 0.0361
4 0.0404 0.0409 0.0411 0.0412 0.0371
5 (big) 0.0387 0.0443 0.0430 0.0393 0.0325

aroughly homogeneous distribution, with only a mild tendency for the smaller firms to
feature a higher beta. Moreover, in results available upon request, we document that the
intraday beta pattern within each of the size quintiles is qualitatively identical. They all
display a pronounced declining market beta dispersion across the trading day, implying
that the systematic intraday beta pattern is robust in this respect.

7.2 Time series properties

Given the overwhelming evidence for intraday variation in market betas, we now ex-
plore the evolution of this pattern over time. Figure 5 plots the time-series for the cross-
sectional dispersion of betas at the market open and close. To mitigate the impact of
estimation error, we report dispersion measures computed over rolling windows of 252
days. The dispersion of the market open betas fluctuates greatly, unlike that of the mar-
ket close betas. In fact, following a decline toward the end of 2013, the beta dispersion
at market close has been remarkably stable. In contrast, the dispersion at the market
open increases initially till some time in 2012, and then gradually declines, reaching a
low during 2015, when the gap between the dispersion of the market open and close
betas is also the smallest in our sample. Since then, the dispersion in the market open
betas increases sharply, about four-fold, and remains highly elevated for the remainder
of our sample.

Figure 5 strongly suggests that the intraday pattern of market betas evolves across
the sample period. We may explore this hypothesis through the formal test procedures
developed in Section 4.2. Specifically, we test whether the cross-sectional dispersion of
betas, as a function of time-of-day, changes across the individual calendar years in our
sample. Table 6 shows that, for most calendar year pairings, the null hypothesis of an
equal intraday pattern for the dispersion measure is overwhelmingly rejected. Interest-
ingly, the most stable period for adjacent intervals seems to be the last three years, when
the cross-sectional dispersion of betas at market open is highly elevated.

It is outside the scope of the current paper to explore systematically, whether there
is any structural relation between the evolving economic environment and the variation
in the cross-sectional distribution of market betas. Nonetheless, the sharp shifts in the
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F1GURE 5. Cross-sectional distribution of market betas over time. The figure displays the cross—
sectional dispersion of market betas at open (solid line) and close (dashed line) over the full
sample. Each dispersion measure is computed using a rolling window of 250 trading days.

cross-sectional dispersion measure in 2011-2012 and, especially, toward the end of 2015,
do warrant a few comments. The former episode coincides with the build up of tensions
during the second wave of the European sovereign debt crises, with several countries
receiving bail-out packages in the middle of 2012. Likewise, the late 2015 to early 2016
period corresponds to significant upheavals in global financial markets, as the Chinese
equity market tumbled sharply between June and August 2015, triggering a devaluation
of the Chinese yuan and a prolonged slide in oil prices. In addition, the beginning 0f 2016
witnessed the decision to hold a vote on Brexit, with the subsequent majority coming out
in favor of withdrawal in June 2016. Moreover, these events took place during a period
when the uncertainty about monetary policy was elevated, as the Federal reserve was
signaling a “data-dependent” end to the zero-rate policy. Action was postponed in the

TABLE 6. Tests for changes in the dispersion of market betas over time. The table reports p-
values for tests of equal cross-sectional dispersion of market betas as functions of time-of-day.
Each entry corresponds to a pairwise test, detailed in Section 4.2, involving the years in the cor-
responding rows and columns.

2011 2012 2013 2014 2015 2016 2017 2018
2010 0.010 0.000 0.000 0.005 0.000 0.000 0.001 0.033
2011 0.058 0.000 0.000 0.000 0.000 0.009 0.069
2012 0.000 0.000 0.000 0.002 0.063 0.004
2013 0.001 0.003 0.000 0.000 0.000
2014 0.000 0.000 0.000 0.004
2015 0.000 0.000 0.000
2016 0.540 0.002

2017 0.003
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FIGURE 6. Average number of firm-specific news items across the trading day. The figure plots
the average number of news items about firms in our sample arriving within each 5-minute in-
terval.

Fall of 2015 given the challenging international financial environment, but an interest
rate hike was eventually implemented in December 2015.

Even if the evidence above is merely suggestive, it points toward the possibility that
the broader economic environment has an impact on the market exposure of individual
stocks, with higher uncertainty or more depressed market conditions generating a wider
spread in the beta distribution. Perhaps equally noteworthy, this effect is almost exclu-
sively present in the earlier part of the trading day. Combined with the prior evidence in
Section 7.1, we conclude that the cross-sectional beta distribution is much wider and
more variable at the market open than close. We conjecture this occurs because the
market is processing different types of information across the trading day. For exam-
ple, firm-specific news may be particularly prevalent or important in the early parts of
the day due to accumulation of news and order flow for individual companies overnight.
This stems both from the reduced trading activity after the market close and regulation
prohibiting the release of pertinent corporate information during active trading.”

To illustrate this, we plot in Figure 6 the average number of firm-specific news items
released every 5 minutes across the trading day for the stocks in our sample.® The inten-
sity of news arrivals displays a periodic structure with pronounced spikes every hour.
More importantly, beside these hourly bursts, a steady decline in intensity across the
trading day is evident, with the two features interacting, but the spikes shrinking drasti-
cally, as the day progresses.

5See Hong and Wang (2000) for an early theoretical account of how market closures may impact the intra-
day return pattern through the introduction of additional overnight risk, cumulating news, and asymmetric
information.

6This information is generated from the Ravenpack database. We only consider news items with a rel-
evance score of 100, ensuring that the firm “plays a key role in the news story and is considered highly
relevant.” Furthermore, we filter out items that merely describe the past evolution in trading or for which
no news category was assigned.
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The above pattern raises a number of questions. In particular, one can explore
whether the heightened intensity of firm-specific news has wider systematic risk and
pricing implications. This may occur if the news regarding one company is not purely
idiosyncratic, but also is expected to be indicative about the prospects of related or
competing firms, either through supply chain links, industry-wide interactions, or sig-
nals regarding the underlying economic fundamentals. The implication of this is that
the covariance between firm-specific and systematic market-wide cash flow news spikes
during periods with an elevated rate of of firm-specific earnings relevant news; see, for
example, the extensive discussion and evidence in Da and Warachka (2009), Savor and
Wilson (2016), and Ben-Rephael, Carlin, Da, and Israelsen (2021). In addition, Patton
and Verardo (2012) document a pronounced day-by-day shift in betas around earnings
announcement days, which they ascribed to learning across stocks. Although we can-
not pursue these issues in depth within the confines of this paper, we dedicate the next
section to an initial investigation of empirical hypotheses inspired by the diversity in the
information flow over time, and in Section 8 we provide a few summary reflections on
the potential asset pricing implications.

7.3 Reaction to informational shocks

In Sections 7.1 and 7.2, we established that the cross-sectional distribution of market
betas varies significantly over time and across the trading day. We also documented a
significant heterogeneity in the information flow regarding firm-specific news across
the trading day. In this section, we explore more directly whether different types of news
shocks have a differential impact on the cross-sectional beta dispersion. For this pur-
pose, we identify particular periods where we expect large innovations to occur for spe-
cific types of information. In particular, we focus on trading days following a large batch
of corporate earnings news, days for which scheduled FOMC announcements are forth-
coming, and days that involve a large shift in a risk-neutral market tail measure.

We start with the earnings announcements. Firms go through a quarterly cycle, with
earnings news being released in the overnight period between two trading days. The
announcements are clustered, with most firms releasing within a few weeks of each
other. We define the quarterly earnings week to be the first week for which the market-
weighted share of announcing firms exceeds 20%. Because the beta dispersion changes
over time, the earnings week is compared to a nearby control week, namely the near-
est preceding week with a low number of earnings releases, defined as less than 0.5% of
stocks by market value. Thus, with the weeks being close in time and selected only by
reference to the number of announcing firms, they should—all else equal—be similar.

The left panel of Figure 7 depicts the intraday cross-sectional market beta dispersion
for the quarterly earnings announcement weeks versus the nonannouncement weeks
preceding them. We observe a fairly constant gap, with the earnings weeks displaying an
elevated dispersion relative to nonannouncement weeks, ranging from the market open
until about 1pm. Subsequently, the gap closes and the two curves are nearly identical for
the last 90 minutes of active trading. This finding is consistent with the idea that firm-
specific news has a heterogeneous impact on stocks, exacerbating the beta dispersion



Quantitative Economics 12 (2021) Recalcitrant betas 675

0.2

0.18

0.16

0.14

0.12

0.1

0.08

. . . . 0.06 . . . .
11:00 12:00 13:00 14:00 15:00 11:00 12:00 13:00 14:00 15:00

FiGURE 7. The effect of earnings information. The left panel plots the dispersion on days in
earnings periods (solid line) and in the week leading up to these earnings days (dashed line).
The right panel presents the same plot, but only including the stocks that do not release earnings
announcements during the given week.

for a substantial part of the trading day. This does not speak directly to the systematic
impact of earnings announcements, as the discrepancy between the two curves may
be due exclusively to a reaction among the announcing firms. Therefore, in the right
panel, we display the same curves, but only for stocks that are not releasing earnings
during this week. It is evident that the qualitative impact is identical. In other words,
the earnings announcements may be firm-specific, but the news shock they generate
is not idiosyncratic; they carry important information regarding the future prospects
of related firms, either through the information conveyed about the recent economic
developments or through trends about specific industries.

One well-identified example of economic news with no firm-specific component is
the 1pm CT Wednesday announcements following the regular FOMC meetings held,
usually, every 6 weeks. The left panel of Figure 8 displays the intraday cross-sectional
beta dispersion across all FOMC announcement days along with the corresponding dis-
persion on all other Wednesdays.” Due to the limited number of days with FOMC an-
nouncements in our sample (a total of 69), the estimated beta dispersion function for
these days is visibly noisier. Nevertheless, the difference relative to days without an
FOMC announcement is evident. The two curves are closely aligned, until there is a
sharp drop in the beta dispersion right around the announcement time, and it then
remains flat afterwards for the remainder of the trading day. The formal test for equal
dispersion functions on days with and without FOMC announcements is in line with
the above discussion. It rejects the hypothesis with p-value well below conventional sig-
nificance levels. At an intuitive level, our results suggest that the stocks become more

“Because there is substantial variation in the distribution of firm-specific and macroeconomic an-
nouncements over the weekdays, it is likely that the intraday beta dispersion patterns are not identical
either. Hence, we compare the FOMC announcements occurring on Wednesdays only to other Wednes-
days, which should ensure that we control for this effect and get a direct read on the impact of the FOMC
news release.
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F1GURE 8. Market beta dispersion following general economic shocks. The left panel depicts the
dispersion of the market betas computed on Wednesdays with (solid line) and without (dashed
line) FOMC announcements. The right panel displays the cross-sectional dispersion in the mar-
ket betas computed for days with the 10% largest increases in the risk-neutral tail index (solid
line), and the 25% lowest increases in the tail index (dashed line).

similar in terms of their exposure to systematic macro level risk in the period around
and immediately following the FOMC announcement.

More broadly, enhanced market or economic policy uncertainty tend to manifest
itself in an elevated compensation for exposure to market risk, especially on the down-
side. Such scenarios may be proxied by trading days for which the VIX volatility index
rises sharply, and likely even more accurately through alternative option-implied mea-
sures capturing the compensation for return variation on the downside.® In the right
panel of Figure 8, we depict the intraday market beta dispersion for the trading days wit-
nessing the 10% largest versus the 25% lowest increases in a risk-neutral downside tail
measure.? We now find a persistently lower beta dispersion for days featuring the higher
increases in the tail measure, and with a gap that declines almost monotonically across
the trading day.'® This lines up well with the left panel, where the macroeconomic re-
lease time is known, and the contraction of the beta dispersion occurs only following
the news release.

The strikingly different responses of the intraday cross-sectional market beta dis-
persion to firm-specific (earnings) versus broader economic uncertainty shocks or an-
nouncements are telling. It provides strong evidence that the release and nature of infor-
mational shocks have a pronounced short-term impact on the cross-sectional sensitivity
of stock returns to overall market movements.

8Andersen, Fusari, and Todorov (2015) and Andersen, Todorov, and Ubukata (2019) found such tail mea-
sures to be more effective than the commonly adopted variance risk premium in capturing risk compensa-
tion in equity markets.

9We use the smoothed version of the left-sided tail variation index for S&P 500 stocks from the website:
tailindex.com. It is computed using end-of-day SPX option prices from Cboe. A detailed description of the
index construction is provided in the white paper available on the site.

105orting stocks into high and low volatility regimes based on the end-of-day VIX measure produces
qualitatively similar results.


http://tailindex.com
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8. CONCLUDING REMARKS AND DIRECTIONS FOR FUTURE WORK

This paper explores the intraday variation in market betas in a general nonparametric
setting. The inference is based on a cross-section of stocks and a related proxy for the
market portfolio. The approximations to the distribution of the relevant statistics are de-
veloped for a fixed time span of the return panel, while the sampling frequency increases
to infinity, and the size of the cross-section is either fixed or asymptotically increasing.
We form estimates of the cross-sectional market beta dispersion over local time win-
dows. We derive a feasible limit theory for the beta dispersion measures, both for a fixed
number of distinct times during the trading day and in a functional sense. We further
extend the analysis through a functional limit theory for estimates of the characteris-
tic function for the cross-sectional beta distribution at given points in time. Exploiting
these econometric tools, we find strong evidence for systematic variation in the cross-
sectional beta dispersion, both during the trading day and across days, with the betas
having the highest dispersion at market open and compressing gradually toward unity
over the course of the trading day.

We conclude with a few comments on directions for future work. One may wonder
if there is any plausible economic rationale for the documented intraday market beta
changes and the associated dispersion pattern. In prior work, firm characteristics have
been used to model market beta dynamics over lower frequencies, but the innate nature
of firms does not change within the trading day. Instead, we deem a risk-based explana-
tion more likely. We conjecture that stocks load differently (i.e., have different betas) on
different types of shocks to the market portfolio, and that the volatility of these distinct
shocks vary systematically within the trading day. To illustrate how this scenario can in-
duce rapid shifts in the market exposure, suppose that the diffusive market shocks can
be split into two types, generically labeled @ and b. Further assuming these shocks are
orthogonal with variances ((rt(o"’))2 and (ot(o’b))z, so that the total diffusive market vari-
ance ((rt(o))2 is equal to their sum. Finally, let the exposure of asset j to a market shock
of type a and b, respectively, be U@ and BU-?). Then, denoting the share of the market
variance stemming from shocks of type ¢ at time ¢ by »'” = (¢/")2/(¢?)2, for c = a, b,
the market beta decomposition for asset j takes the form

BY = 0890 + BUP, witho® + 0 = 1.

This decomposition shows that the market beta can vary, even if the latent exposures
to market shocks of type a and b remain constant, because the composition of type a
and b shocks embedded in the market variance may fluctuate across the trading day.
Specifically, if the “fundamental” betas, 8¢>¢ and B>?), have different cross-sectional
properties, with the former being, say, more cross-sectionally dispersed than the latter,
then the observed intraday market beta behavior can be rationalized by a weakening in
the relative strength of the component a-t(o’“) in the overall market variance, that is, for
wﬁ") declining over the course of the trading day.

The above discussion is purely generic. However, this type of decomposition of
shocks to the market portfolio arises naturally within equilibrium or reduced-form asset
pricing models, where the relative importance of distinct risk factors vary over time. For
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example, Campbell and Vuolteenaho (2004) decomposed shocks to the market portfo-
lio into news about future cash flows and discount rates. In this case, even if the cash-
flow and discount-rate betas are constant, but not identical, systematic variation in the
volatility of cash-flow versus discount-rate news across the trading day will manifest it-
self in a corresponding intraday variation in market betas. Informally, our finding of a
strongly declining intraday pattern in firm-specific information arrivals in Section 7.2
suggests that cash-flow news are dominant during the earlier parts of the trading day,
while other factors such as general macroeconomic and trading-related shocks become
relatively more important toward the market close. Moreover, the strikingly different re-
sponse of the cross-sectional beta dispersion to general market uncertainty and FOMC
announcements versus the firm-specific earnings releases points to the importance of
allowing for cross-sectionally heterogeneous exposures and pricing implications of di-
verse aggregate news shocks.

To test whether a hypothesis like the one above can explain the documented intra-
day market beta behavior, one can use a high-frequency identification approach and
study stock price behavior around a prescheduled announcement (e.g., FOMC) where
the market shock can be plausibly identified as being of a specific type (say, a discount-
rate shock for FOMC announcements). An alternative is to seek identification through
heteroskedasticity in the spirit of Rigobon (2003), relying on scenarios where heightened
market volatility can be associated with a certain type of fundamental shock to the mar-
ket portfolio. The econometric tools developed here should be helpful in this context,
but we defer formal explorations of such identification strategies to future work.

At a general level, our results illustrate the potential of high-frequency data to assist
in the identification of sources of variation in risk exposure for large cross-sections of
financial assets. In particular, focusing on systematic intraday variation in information
flow, diverse market conditions, or distinct economic events, along with the concurrent
cross-section of high-frequency returns, future work should be able to more robustly
identify the sensitivity of assets to certain types of economic shocks. As documented
in this paper, the variation in these high-frequency features is very large, both within
the day and for the same time-of-day across different trading days. Moreover, since we
can observe such variation over relatively short calendar time windows, it is plausible
that fundamental risk exposures and firm characteristics remain stable over such limited
horizons. This should facilitate the identification of sources of priced risk, and allow us
to assess their implications for cross-sectional pricing in greater detail than is feasible
from daily or lower-frequency data, for which much longer (calendar time) samples are
needed to obtain sufficient variation and statistical power.
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