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Appendix A: Derivations

A.1 Peer effects as a game

The interactions of peer group members may be interpreted as a game. We assume that
group members have utility functions that depend on peers only through the true mean
of the peer group’s outcomes. More precisely, what we are assuming is that there is an
underlying distribution of the (infinite) population of potential group members. Every-
one who is actually in the group in the real world population is a draw from this underly-
ing potential population. Each individual in the group knows the true mean of this dis-
tribution that individuals are drawn from, and bases their behavior on that true mean.
This model implies that the individual’s own choice has zero effect on the group mean.

If group members observe each other’s private information and make decisions si-
multaneously (corresponding to a complete information game), then we assume that
each individual’s actual behavior will only depend on others through the group mean.
Estimation of complete games typically depends on having data on all members of each
observed group. An example is Lee (2007). However, in our case we only observe a small
number of members of each group. An alternative model of group behavior is a Bayes
equilibrium derived from a game of incomplete information, in which each individual
has private information and makes decisions based on rational expectations regarding
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others. In either type of game, there is the potential problem of no equilibrium or multi-
ple equilibria existing, resulting in the problems of incompleteness or incoherence and
the associated difficulties they introduce for identification as discussed by Tamer (2003).

We do not take a stand on whether the true game in our model is one of complete or
incomplete information. We assume only that players are basing their behavior on the
true group means. This is most easily rationalized by assuming that consumers either
have complete information, or can observe a sufficiently large number of members in
each group that their errors in the calculating group means are negligible.1

A.2 Generic model identification and estimation with fixed effects

Let yi denote an outcome and xi denote a K vector of regressors xki for an individual i.
Let i ∈ g denote that the individual i belongs to group g. For each group g, assume we
observe ng = ∑

i∈g 1 individuals, where ng is a small fixed number, which does not go
to infinity. Let yg = E(yi | i ∈ g), ŷg,−ii′ = ∑

l∈g,l �=i,i′ yl/(ng − 2), and εyg,−ii′ = ŷg,−ii′ − yg,
so yg is the true group mean outcome and ŷg,−ii′ is the observed leave-two-out group
average outcome in our data, and εyg,−ii′ is the estimation error in the leave-two-out
sample group average. Define xg =E(xi | i ∈ g), xx′

g = E(xix′
i | i ∈ g), and similarly define

x̂g,−ii′ , x̂x′
g,−ii′ , εxg,−ii′ and εxxg,−ii′ analogously to ŷg,−ii′ , and εyg,−ii′ .

Consider the following single equation model (the multiple equation analog is dis-
cussed later). For each individual i in group g, let

yi =
(
yga+ x′

ib
)2
d + (

yga+ x′
ib

) + vg + ui, (A1)

where vg is a group level fixed effect and ui is an idiosyncratic error. The goal here is
identification and estimation of the effects of yg and xi on yi, which means identifying
the coefficients a, b, and d.

We could have written the seemingly more general model

yi =
(
yga+ x′

ib + c
)2
d + (

yga+ x′
ib + c

)
k+ vg + ui,

where c and k are additional constants to be estimated. However, one can readily check
that this model can be rewritten as

yi =
(
yga+ x′

ib
)2
d + (2cd + k)

(
yga+ x′

ib
) + c2d + ck+ vg + ui.

If 2cd+k �= 0, then this equation is identical to equation (A1), replacing the fixed effect vg
with the fixed effect ṽg = c2d+ck+vg, and replacing the constants a, b, d, with constants
ã, b̃, d̃ defined by ã = (2cd + k)a, b̃ = (2cd + k)b, and d̃ = d/(2cd + k)2. If 2cd + k = 0,
then by letting ṽg = c2d + ck + vg, this equation becomes yi = (yga + x′

ib)2d + ṽg + ui.
Since this pure quadratic form equation is strictly easier to identify and estimate, and is

1A more difficult problem would be allowing for the possibility that group members may, like the econo-
metrician, only observe group means with error. We do not attempt to tackle this issue. Doing so would re-
quire modeling how individuals estimate group means, how they incorporate uncertainty regarding group
mean estimates into their purchasing decisions, and showing how all of that could be identified in the pres-
ence of the many other obstacles to identification that we face.
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irrelevant for our empirical application, we will rule it out and, therefore, without loss of
generality replace the more general model with equation (A1).

We assume that the number of groups G goes to infinity, but we do NOT assume
that ng goes to infinity, so ŷg,−ii′ is not a consistent estimator of yg. We instead treat
εyg,−ii′ = ŷg,−ii′ −yg as the measurement error in ŷg,−ii′ , which is not asymptotically neg-
ligible. This makes sense for data like ours where only a small number of individuals are
observed within each peer group. This may also be a sensible assumption in many stan-
dard applications where true peer groups are small. For example, in a model where peer
groups are classrooms, failure to observe a few children in a class of one or two dozen
students may mean that the observed class average significantly mismeasures the true
class average.

Formally, our first identification theorem makes Assumptions A.1 to A.5 below.

Assumption A.1. Each individual i in group g satisfies equation (A1). xi is a K-
dimensional vector of covariates. For each k ∈ {1, � � � , K}, for each group g with i ∈ g and
i′ ∈ g, Pr(xik �= xi′k ) > 0. Unobserved vg are group level fixed effects. Unobserved errors ui
are independent across groups g and have E(ui | all xi′ having i′ ∈ g where i ∈ g) = 0. The
number of observed groups G → ∞. For each observed group g, we observe a sample of
ng ≥ 3 observations of yi, xi.

Assumption A.1 essentially defines the model. Note that Assumption A.1 does not re-
quire that ng → ∞. We can allow the observed sample size ng in each group g to be fixed,
or to change with the number of groups G. The true number of individuals comprising
each group is unknown and could be finite.

Assumption A.2. The coefficients a, b, d are unknown constants satisfying d �= 0, b �= 0,
and [1 − a(2b′xgd + 1)]2 − 4a2d[db′xx′

gb + b′xg + vg] ≥ 0.

In Assumption A.2 d �= 0 is needed to identify the parameter a in the fixed effects
identification, because if d = 0 making the model linear, then after differencing, the pa-
rameter a would drop out of the model. This nonlinearity will not be required later for
random effects model. Having b �= 0 is necessary since otherwise we would have nothing
exogenous in the model.

Note that the inequality in Assumption A.2 takes the form of a simple lower or upper
bound (depending on the sign of d) on each fixed effect vg. This inequality must hold to
ensure that an equilibrium exists for each group, thereby avoiding Tamer’s (2003) poten-
tial incoherence problem. To see this, plugging equation (A1) for yi into yg = E(yi | i ∈ g),
we have

yi = y2
gda

2 + a
(
2dx′

ib + 1
)
yg + b′xix′

ibd + x′
ib + vg + ui (A2)

Taking the within group expected value of this expression gives

yg = y2
gda

2 + a
(
2db′xg + 1

)
yg + db′xx′

gb + b′xg + vg. (A3)
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so the equilibrium value of yg must satisfy this equation for the model to be coherent. If

a = 0, then we get yg = db′xx′
gb + b′xg + vg, which exists and is unique. If a �= 0, meaning

that peer effects are present, then equation (A3) is a quadratic with roots

yg = 1 − a
(
2b′xgd + 1

) ±
√[

1 − a
(
2b′xgd + 1

)]2 − 4a2d
[
db′xx′

gb + b′xg + vg
]

2a2d
. (A4)

Note that regardless of whether a = 0 or not, yg is always a function of xg, xx′
g, and

vg. If the inequality in Assumption A.2 is satisfied, this yields a quadratic in yg, which
if a �= 0, has real solutions and having a solution means that an equilibrium exists. If
a does equal zero, then the model will trivially have an equilibrium (and be identified)
because in that case there are not any peer effects. We do not take a stand on which root
of equation (A4) is chosen by consumers, and we just make the following assumption.

Assumption A.3. Individuals within each group agree on an equilibrium selection rule.

The equilibrium of yg therefore exists under Assumption A.2 and is unique under
Assumption A.3.

For identification, we need to remove the fixed effect from equation (A1), which we
do by subtracting off another individual in the same group. For each (i, i′ ) ∈ g, consider
pairwise difference

yi − yi′ = 2adygb′(xi − xi′ ) + db′(xix′
i − xi′x

′
i′
)
b + b′(xi − xi′ ) + ui − ui′

= 2adŷg,−ii′b
′(xi − xi′ ) + db′(xix′

i − xi′x
′
i′
)
b + b′(xi − xi′ )

+ ui − ui′ − 2adεyg,−ii′b
′(xi − xi′ ), (A5)

where the second equality is obtained by replacing yg on the right-hand side with
ŷg,−ii′ − εyg,−ii′ . In addition to removing the fixed effects vg, the pairwise difference also
removed the linear term ayg, and the squared term da2y2

g. The second equality in equa-
tion (A5) shows that yi − yi′ is linear in observable functions of data, plus a composite
error term ui − ui′ − 2adεyg,−ii′b′(xi − xi′ ) that contains both εyg,−ii′ and ui − ui′ . By As-
sumption A.1, ui − ui′ is conditionally mean independent of xi and xi′ . It can also be
shown that

εyg,−ii′ = ŷg,−ii′ − yg

= 1
ng − 2

∑
l∈g,l �=i,i′

(
2adygb′(xl − xg ) + db′(xlx

′
l − xx′

g
)
b + b′(xl − xg ) + ul

)
= 2adygb′εxg,−ii′ + b′εxxg,−ii′bd + b′εxg,−ii′ + ûg,−ii′ ,

where

εxg,−ii′ = 1
ng − 2

∑
l∈g,l �=i,i′

(xl − xg ); εxxg,−ii′ = 1
ng − 2

∑
l∈g,l �=i,i′

(
xlx

′
l − xx′

g
)
.
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Substituting this expression into equation (A5) gives an expression for yi − yi′ that is
linear in ŷg,−ii′(xi − xi′ ), (xix′

i − xi′x′
i′ ), (xi − xi′ ), and a composite error term.

In addition to the conditionally mean independent errors ui − ui′ and ûg,−ii′ , the
components of this composite error term include εxg,−ii′ and εxxg,−ii′ , which are mea-
surement errors in group level mean regressors. If we assumed that the number of in-
dividuals in each group went to infinity, then these epsilon errors would asymptotically
shrink to zero, and the resulting identification and estimation would be simple. In our
case, these errors do not go to zero, but one might still consider estimation based on
instrumental variables. This will be possible with further assumptions on the data.

In the next assumption, we allow for the possibility of observing group level variables
rg that may serve as instruments for ŷg,−ii′ . Such instruments may not be necessary,
but if such instruments are available (as they will be in our later empirical application),
they can help both in weakening sufficient conditions for identification and for later
improving estimation efficiency.

Assumption A.4. Let rg be a vector (possibly empty) of observed group level instruments
that are independent of each ui. Assume E((xi − xg ) | i ∈ g, xg, xx′

g, vg, rg ) = 0, E((xix′
i −

xx′
g ) | i ∈ g, rg ) = 0, and that xi − xg and xix′

i − xx′
g are independent across individuals i.

Assumption A.4 corresponds to (but is a little stronger than) standard instrument
validity assumptions. A sufficient condition for the equalities in Assumption A.4 to
hold is to let εix = xi − xg be independent across individuals, and assume that E(εix |
xg, xx′

g, vg, rg for i ∈ g) = 0 and E(εixε′
ix | xg, rg for i ∈ g) = E(εixε′

ix | i ∈ g). To see this,
we have

E
(
xix′

i − xx′
g | i ∈ g, xg, rg

)
= E

[
(εix + xg )(εix + xg )′ | i ∈ g, xg, rg

] − xx′
g

= E
(
εixε

′
ix | i ∈ g, xg, rg

) +E(xi|i ∈ g)E
(
x′
i|i ∈ g

) −E
(
xix′

i|i ∈ g
)

= E
(
εixε

′
ix | i ∈ g, xg, rg

) −E
(
εixε

′
ix|i ∈ g

)
.

A simpler but stronger sufficient condition would just be that εix are independent across
individuals i and independent of group level variables xg, xx′

g, vg, rg. Essentially, this
corresponds to saying that any individual i in group g has a value of xi that is a ran-
domly drawn deviation around their group mean level xg. The first two equalities in A.4
are used to show that E(εyg,−ii′ | rg ) = 0, and the independence of measurement errors
across individuals is used to show E(εyg,−ii′(xi − xi′ ) | rg, xi, xi′ ) = (xi − xi′ )E(εyg,−ii′ |
rg ) = 0, so that xi and xi′ are valid instruments. Given Assumptions A.1 and A.4, one can
directly verify that

E
[
yi − yi′ −

(
2adŷg,−ii′b

′(xi − xi′ ) + db′(xix′
i − xi′x

′
i′
)
b

+ b′(xi − xi′ )
) | rg, xi, xi′

] = 0. (A6)

Under Assumptions A.1 to A.4, (xi − xi′ )E(ŷg,−ii′|rg, xi, xi′ ) is linearly independent
of (xi − xi′ ) and (xix′

i − xi′x′
i′ ) with a positive probability. These conditional moments
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could therefore be used to identify the coefficients 2adb, b1db, � � � , bKdb, and b, which
we could then immediately solve for the three unknowns a, b, d. Note that we have K+2
parameters, which need to be estimated, and even if no rg are available, we have 2K
instruments xi and xi′ . The level of xi as well as the difference xi − xi′ may be useful as
an instrument (and nonlinear functions of xi can be useful), because (A4) shows that yg,
and hence ŷg,−ii′ is nonlinear in xg, and xi is correlated with xg by xi = εix + xg.

The above derivations outline how we obtain identification, while the formal proof
is given in Theorem 1 below. To simplify estimation, we construct unconditional rather
than conditional moments for identification and estimation. Let rgii′ denote a vector of
any chosen functions of rg, xi, and xi′ , which we will take as an instrument vector. It then
follows immediately from equation (A6) that

E

[(
yi − yi′ − (1 + 2adŷg,−ii′ )

K∑
k=1

bk(xki − xki′ )

− d

K∑
k=1

K∑
k′=1

bkbk′(xkixk′i − xki′xk′i′ )

)
rgii′

]
= 0. (A7)

Let

L1gii′ = (yi − yi′ ), L2kgii′ = (xki − xki′ ), L3kgii′ = ŷg,−ii′(xki − xki′ ),

L4kk′gii′ = xkixk′i − xki′xk′i′ .

Equation (A7) is linear in these L variables and so could be estimated by GMM. This
linearity also means they can be aggregated up to the group level as follows. Define

�g = {(
i, i′

) | i and i′ are observed, i ∈ g, i′ ∈ g, i �= i′
}

.

So, �g is the set of all observed pairs of individuals i and i′ in the group g. For � ∈
{1, 2k, 3k, 4kk′ | k, k′ = 1, � � � , K}, define vectors

Y�g =

∑
(i,i′ )∈�g

L�gii′rgii′

∑
(i,i′ )∈�g

1
.

Then averaging equation (A7) over all (i, i′ ) ∈ �g gives the unconditional group level mo-
ment vector

E

(
Y1g −

K∑
k=1

bkY2kg − 2ad
K∑

k=1

bkY3kg − d

K∑
k=1

K∑
k′=1

bkbk′Y4kk′g

)
= 0. (A8)

Suppose the instrumental vector rgii′ is q dimensional. Denote the q × (K2 + 2K)
matrix Yg = (Y21g, � � � , Y2Kg, Y31g, � � � , Y3Kg, Y411g, � � � , Y4KKg ). The following assumption
ensures that we can identify the coefficients in this equation.
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Assumption A.5. E(Y′
g )E(Yg ) is nonsingular.

Theorem 1. Given Assumptions A.1–A.5, the coefficients a, b, d are identified from(
b′, 2adb′, db1b′, � � � , dbKb′)′ = [

E
(
Y′
g

)
E(Yg )

]−1 ·E(
Y′
g

)
E(Y1g ).

As noted earlier, Assumptions A.1 to A.4 should generally suffice for identification. As-
sumption A.5 is used to obtain more convenient identification based on unconditional
moments. Assumption A.5 is itself stronger than necessary, since it would suffice to iden-
tify arbitrary coefficients of the Y variables, ignoring all of the restrictions among them
that are given by equation (A8).

Given the identification above, based on equation (A8) we can immediately con-
struct a corresponding group level GMM estimator

(â, b̂1, � � � , b̂K , d̂)

= arg min

[
1
G

G∑
g=1

(
Y1g −

K∑
k=1

bkY2kg − 2ad
K∑

k=1

bkY3kg − d

K∑
k=1

K∑
k′=1

bkbk′Y4kk′g

)]′

× �̂

[
1
G

G∑
g=1

(
Y1g −

K∑
k=1

bkY2kg − 2ad
K∑

k=1

bkY3kg − d

K∑
k=1

K∑
k′=1

bkbk′Y4kk′g

)]
(A9)

for some positive definite moment weighting matrix �̂. In equation (A9), each group
g corresponds to a single observation, the number of observations within each group
is assumed to be fixed, and recall we have assumed the number of groups G goes to
infinity. Since this equation has removed the vg terms, there is no remaining correlation
across the group level errors and, therefore, standard cross-section GMM inference will
apply. Also, with the number of observed individuals within each group held fixed, there
is no loss in rates of convergence by aggregating up to the group level in this way.

One could alternatively apply GMM to equation (A7), where the unit of observa-
tion would then be each pair (i, i′ ) in each group. However, when doing inference one
would then need to use clustered standard errors, treating each group g as a cluster, to
account for the correlation that would, by construction, exist among the observations
within each group. In this case,

(â, b̂1, � � � , b̂K , d̂) = arg min

⎛⎜⎜⎜⎜⎜⎜⎝

G∑
g=1

∑
(i,i′ )∈�g

mgii′

G∑
g=1

∑
(i,i′ )∈�g

1

⎞⎟⎟⎟⎟⎟⎟⎠

′

�̂

⎛⎜⎜⎜⎜⎜⎜⎝

G∑
g=1

∑
(i,i′ )∈�g

mgii′

G∑
g=1

∑
(i,i′ )∈�g

1

⎞⎟⎟⎟⎟⎟⎟⎠ , (A10)

where

mgii′ =
(
L1gii′ −

K∑
k=1

bkL2kgii′ − 2ad
K∑

k=1

bkL3kgii′ − d

K∑
k=1

K∑
k′=1

bkbk′L4kk′gii′

)
rgii′ .
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The remaining issue is how to select the vector of instruments rgii′ , the elements of
which are functions of rg, xi, xi′ chosen by the econometrician. Based on equation (A7),
rgii′ should include the differences xki−xki′ and xkixk′i−xki′xk′i′ for all k, k′ from 1 to K,
and should include terms that will correlate with ŷg,−ii′(xki − xki′ ). Using equation (A4)
as a guide for what determines yg, and hence what should correlate with ŷg,−ii′ , suggests
that rgii′ could include, for example, xki(xki − xki′ ).

We might also have available additional instruments rg that come from other data
sets. A strong set of instruments for ŷg,−ii′(xki − xki′ ) could be (xki − xki′ )rg, where rg is
a vector of one or more group level variables that are correlated with yg, but still satisfy
Assumption A.4. One such possible rg is a vector of group means of functions of x that
are constructed using individuals that are observed in the same group as individual i,
but in a different time period of our survey. For example, we might let rg include x̂gt· =∑

s �=t

∑
i∈gs xi/

∑
s �=t

∑
i∈gs 1 where s indicates the period and t is the current period. In

our empirical application, since the data take the form of repeated cross-sections rather
than panels, different individuals are observed in each time period. So x̂gt· is just an
estimate of the group mean of xg, but based on data from time periods other than one
used for estimation. This produces the necessary uncorrelatedness (instrument validity)
conditions in Assumption A.4. The relevance of these instruments (the nonsingularity
condition in Assumption A.5) will hold as long as group level moments of functions of x
in one time period are correlated with the same group level moments in other periods.

In our empirical application, what corresponds to the vector xi here includes the to-
tal expenditures, age, and other characteristics of a consumer i, so Assumptions A.4 and
A.5 will hold if the distribution of income and other characteristics within groups are
sufficiently similar across time periods, while the specific individuals within each group
who are sampled change over time. The nonlinearity of yg in equation (A4) shows that
additional nonlinear functions of x̂gt·, could also be valid and potentially useful addi-
tional instruments.

A.3 Multiple equation generic model with fixed effects

Our actual demand application has a vector of J outcomes and a corresponding system
of J equations. Extending the generic model to a multiple equation system introduces
potential cross equation peer effects, resulting in more parameters to identify and es-
timate. Let yi = (y1i, � � � , yJi ) be a J-dimensional outcome vector, where yji denotes the
j’th outcome for individual i. Then we extend the single equation generic model to the
multiequation that for each good j,

yji =
(
y′
gaj + x′

ibj

)2
dj + (

y′
gaj + x′

ibj

) + vjg + uji, (A11)

where yg = E(yi|i ∈ g) and aj = (a1j , � � � , aJj )′ is the associated J-dimensional vector of
peer effects for jth outcome (which in our application is the jth good). We now show
that analogous derivations to the single equation model gives conditional moments

E
((
yji − yji′ − 2dj ŷ′

g,−ii′aj(xi − xi′ )
′bj − djb′

j

(
xix′

i − xi′x
′
i′
)
bj − (xi − xi′ )

′bj

) | rg, xi, x′
i

) = 0.
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Construction of unconditional moments for GMM estimation then follows exactly as be-
fore. The only difference is that now each outcome equation contains a vector of coeffi-
cients aj instead of a single a. To maximize efficiency, the moments used for estimating
each outcome equation can be combined into a single large GMM that estimates all of
the parameters for all of the outcomes at the same time.

From

yji = dj
(
y′
gaj

)2 + 2y′
gajdjx′

ibj + b′
jxix′

ibjdj + y′
gaj + x′

ibj + vjg + uji,

we have the equilibrium

yjg = dj
(
y′
gaj

)2 + 2djy′
gajx′

gbj + b′
jxx′

gbjdj + y′
gaj + x′

gbj + vjg

and the leave-two-out group average

ŷjg,−ii′ = dj
(
y′
gaj

)2 + 2djy′
gaj x̂′

g,−ii′bj + b′
j x̂x′

g,−ibjdj + y′
gaj + x̂′

g,−ii′bj + vjg + ûjg,−ii′ .

Therefore, the measurement error is

εyjg,−ii′ = ŷjg,−ii′ − yjg = 2djy′
gajε

′
xg,−ii′bj + b′

jεxxg,−ii′bjdj + ε′
xg,−ii′bj + ûjg,−ii′ .

Using the same analysis as in Appendix A.2,

yji − yji′ = 2dj ŷ′
g,−ii′aj(xi − xi′ )

′bj + djb′
j

(
xix′

i − xi′x
′
i′
)
bj + (xi − xi′ )

′bj + uji − uji′

− 2djε
′
yg,−ii′aj(xi − xi′ )

′bj .

Therefore, for j = 1, � � � , J, we have the moment condition

E
((
yji − yji′ − (xi − xi′ )

′bj − 2dj ŷ′
g,−ii′aj(xi − xi′ )

′bj − djb′
j

(
xix′

i − xi′x
′
i′
)
bj

)
|rgii′

) = 0.

Denote

L1jgii′ = (yji − yji′ ), L2kgii′ = (xki − xki′ ), L3jkgii′ = ŷjg,−ii′(xki − xki′ ),

L4kk′gii′ = xkixk′i − xki′xk′i′ .

For � ∈ {1j, 2k, 3jk, 4kk′ | j = 1, � � � , J; k, k′ = 1, � � � , K}, define vectors

Y�g =

∑
(i,i′ )∈�g

L�gii′rgii′

∑
(i,i′ )∈�g

1

and the identification comes from the group level unconditional moment equation

E

(
Y1jg −

K∑
k=1

bjkY2kg − 2dj
J∑

j′=1

K∑
k=1

ajj′bjkY3j′kg − dj

K∑
k=1

K∑
k′=1

bjkbjk′Y4kk′g

)
= 0,

where bjk is the kth element of bj and ajj′ is the j′th element of aj .
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Let the q×(K2 +JK+K) matrix Yg = (Y21g, � � � , Y2Kg, Y311g, Y312g, � � � , Y3JKg, Y411g, � � � ,

Y4KKg ) as before. If E(Yg )′E(Yg ) is nonsingular, for each j = 1, � � � , J, we can identify

(
b′
j , 2aj1djb′

j , � � � , 2ajJdjb′
j , djbj1b′

j , � � � , djbjKb′
j

)′ = [
E(Yg )′E(Yg )

]−1 ·E(Yg )′E(Y1jg ).

Then bj , dj , and aj can be identified for each j = 1, � � � , J.

For a single large GMM that estimates all of the parameters for all of the outcomes at

the same time, we construct the group level GMM estimation based on

(̂
a′

1, � � � , â′
J , b̂′

1, � � � , b̂′
J , d̂1, � � � , d̂J

)′ = arg min

(
1
G

G∑
g=1

mg

)′
�̂

(
1
G

G∑
g=1

mg

)
,

where �̂ is some positive definite moment weighting matrix and

mg =
⎛⎜⎝Y11g

...
Y1Jg

⎞⎟⎠ −

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎝

K∑
k=1

b1kY2kg

...
K∑

k=1

bJkY2kg

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎠
− 2

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎝

d1

J∑
j′=1

K∑
k=1

a1j′b1kY3j′kg

...

dJ

J∑
j′=1

K∑
k=1

aJj′bJkY3j′kg

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎠

−

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎝

d1

K∑
k=1

K∑
k′=1

b1kb1k′Y4kk′g

...

dJ

K∑
k=1

K∑
k′=1

bJkbJk′Y4kk′g

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎠
is a qJ-dimensional vector.

Alternatively, we can construct the individual level GMM estimation using the group

clustered standard errors

(̂
a′

1, � � � , â′
J , b̂′

1, � � � , b̂′
J , d̂1, � � � , d̂J

)′

= arg min

⎛⎜⎜⎜⎜⎜⎜⎝

G∑
g=1

∑
(i,i′ )∈�g

mgii′

G∑
g=1

∑
(i,i′ )∈�g

1

⎞⎟⎟⎟⎟⎟⎟⎠

′

�̂

⎛⎜⎜⎜⎜⎜⎜⎝

G∑
g=1

∑
(i,i′ )∈�g

mgii′

G∑
g=1

∑
(i,i′ )∈�g

1

⎞⎟⎟⎟⎟⎟⎟⎠ ,
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where

mgii′ =
⎛⎜⎝L11gii′rgii′

...
L1Jgii′rgii′

⎞⎟⎠ −

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎝

K∑
k=1

b1kL2kgii′rgii′

...
K∑

k=1

bJkL2kgii′rgii′

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎠
− 2

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎝

d1

J∑
j′=1

K∑
k=1

a1j′b1kL3j′gii′rgii′

...

dJ

J∑
j′=1

K∑
k=1

aJj′bJkL3j′gii′rgii′

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎠

−

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎝

d1

K∑
k=1

K∑
k′=1

b1kb1k′L4kk′gii′rgii′

...

dJ

K∑
k=1

K∑
k′=1

bJkbJk′L4kk′gii′rgii′

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎠
.

A.4 Multiple equation generic model with random effects

Here, we provide the derivation of equation (20), thereby showing validity of the mo-
ments used for random effects estimation. As with fixed effects, we here extend the
model to allow a vector of covariates xi. We begin by rewriting the generic model with
vector xi, equation (A1).

yi = y2
ga

2d + a
(
1 + 2b′xid

)
yg + b′xi + b′xix′

ibd + vg + ui, (A12)

We now add the assumption that vg is independent of x and u, making it a random effect.
Taking the expectation of this expression given being in group g gives

yg = y2
gda

2 + a
(
2db′xg + 1

)
yg + db′xx′

gb + b′xg +μ, (A13)

where μ=E(vg ). Hence, the group mean yg is an implicit function of xg and xx′
g.

Define measurement errors εxl = xl − xg, εxxl = xlx′
l − xx′

g, and εyg,−ii′ = ŷg,−ii′ − yg.
For any i′ ∈ g, the measurement error εyi′ = yi′ − yg is

εyi′ = 2adygb′εxi′ + db′εxxi′b + b′εxi′ + ui′ + vg −μ

and so the measurement error εyg,−ii′ = ŷg,−ii′ − yg is

εyg,−ii′ = ŷg,−ii′ − yg = 2adygb′εxg,−ii′ + b′εxxg,−ii′bd + b′εxg,−ii′ + ûg,−ii′ + vg −μ.

Therefore, we can write

yi = ŷg,−ii′yi′a
2d + a

(
1 + 2b′xid

)̂
yg,−ii′ + b′xi + b′xix′

ibd + vg + ui + ε̃gii′ , (A14)

where

ε̃gii′ = (
y2
g − ŷg,−ii′yi′

)
a2d + a

(
1 + 2b′xid

)
(yg − ŷg,−ii′ )

= −(εyg,−ii′ + εy,i′ )yga
2d − εyg,−ii′εy,i′a

2d − a
(
1 + 2b′xid

)
εyg,−ii′ .

Formally, we make the following assumptions.



12 Lewbel, Norris, Pendakur, and Qu Supplementary Material

Assumption A.6. For any individual l, vg is independent of (xl, xg, xx′
g ), the error term

ul, and measurement errors εxl and εxxl.

Assumption A.7. For each individual l in group g, conditional on (xg, xx′
g ) the mea-

surement errors εxl and εxxl are independent across individuals and have zero means.

Assumption A.8. For each group g, vg is independent across groups with E(vg|x,
xg, xx′

g ) = μ and we have the conditional homoskedasticity that Var(vg|x, xg, xx′
g ) = σ2.

Let v0 = μ−da2σ2. It follows from Assumptions A.6–A.8 that, for any l �= i, E(ygεyl|xi,

xg, xx′
g ) = 0 and E(εylxi|xi, xg, xx′

g ) = 0. Hence, E(ε̃gii′|xi, xg, xx′
g ) = −da2E(εyg,−ii′εy,i′|

xi, xg, xx′
g ) = −da2 Var(vg ) and

E
(
vg + ui + ε̃gii′ | xg, xx′

g, xi
) = μ− da2σ2 = v0. (A15)

By construction vg + ui + ε̃gii′ is also independent of rg. Given this, equation (20) then
follows from equations (A14) and (A15).

A.5 Identification and estimation of the demand system with fixed effects

Here, we outline how the parameters of the demand system are identified. This is fol-
lowed by the formal proof of identification, based on the corresponding moments we
construct for estimation. As with the generic model, equation (8) entails the compli-
cations associated with nonlinearity, and the issues that the fixed effects vg correlate
with regressors, and that qg is not observed. As before, let ng denote the number of con-
sumers we observe in group g. Assume ng ≥ 3. The actual number of consumers in each
group may be large, but we assume only a small, fixed number of them are observed. Our
asymptotics assume that the number of observed groups goes to infinity as the sample
size grows, but for each group g, the number of observed consumers ng is fixed. We may
estimate qg by a sample average of qi across observed consumers in group i, but the
error in any such average is like measurement error, that does not shrink as our sample
size grows.

We show identification of the parameters of the demand system (8) in two steps. The
first step identifies some of the model parameters by closely following the identification
strategy of our simpler generic model, holding prices fixed. The second step then identi-
fies the remaining parameters based on varying prices. We summarize these steps here,
then provide formal assumptions and proof of the identification in the next section.

For the first step, consider data just from a single time period and region, so there is
no price variation and p can be treated as a vector of constants.

We distinguish between elements of z that vary at the individual versus group level,
writing C as C =(C̃ : D) for submatrices C̃ and D, and replacing Czi in Equation (9) with
Czi = C̃̃zi + D̃zg, where z̃i is the vector of characteristics that vary across individuals in a
group and z̃g are group level characteristics.
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Let α = A′p, β = p1/2′Rp1/2, γ̃ = C̃′p, κ = D′p, δ = b/p, Czi = C̃̃zi + D̃zg, rj = rjj +
2

∑
k>j rjkp

−1/2
j p

1/2
k , and m = (e−b′ ln p )d/p with constraints of b′1 = 1 and d′1 = 0. Then

equation (9) reduces to the system of Engel curves

qi =
(
xi −β−α′qg − γ̃ ′̃zi −κ′̃zg

)2m + (
xi −β−α′qg − γ̃ ′̃zi −κ′̃zg

)
δ

+ r + Aqg + C̃̃zi + D̃zg + vg + ui, (A16)

This has a very similar structure to the generic multiple equation system of equations
(A11), and we proceed similarly.

Define ṽg = (α′qg + β + κ′̃zg )2m − (α′qg + β + κ′̃zg )δ + r + Aqg + D̃zg + vg. Then
equation (A16) can be rewritten more simply as

qi =
(
xi − γ̃ ′̃zi

)2m − 2
(
xi − γ̃ ′̃zi

)(
α′qg +β+κ′̃zg

)
m + (

xi − γ̃ ′̃zi
)
δ

+ C̃̃zi + ṽg + ui, (A17)

Here, the fixed effect vg has been replaced by a new fixed effect ṽg. As in the generic fixed
effects model, we begin by taking the difference qji − qji′ for each good j ∈ {1, � � � , J} and
each pair of individuals i and i′ in group g. This pairwise differencing of equation (A17)
gives, for each good j,

qji − qji′ = ((
xi − γ̃ ′̃zi

)2 − (
xi′ − γ̃ ′̃zi′

)2)
mj + c̃′

j (̃zi − z̃i′ )

+ [
δj − 2mj

(
α′qg +β+κ′̃zg

)][(
xi − γ̃ ′̃zi

) − (
xi′ − γ̃ ′̃zi′

)] + (uji − uji′ ),

where c̃′
j equals the j’th row of C̃. Then, again as in the generic model, we replace the un-

observable true group mean qg with the leave-two-out estimate q̂g,−ii′ =
1

ng−2

∑
l∈g,l �=i,i′ ql, which then introduces an additional error term into the above equa-

tion due to the difference between q̂g,−ii′ and qg.
Define group level instruments rg as in the generic model. In particular, rg can in-

clude z̃g, group averages of xi and of zi, using data from individuals i that are sampled in
other time periods than the one currently being used for Engel curve identification. De-
fine a vector of instruments rgii′ that contains the elements rg, xi, z̃i, xi′ , z̃i′ , and squares
and cross products of these elements. We then, analogous to the generic model, obtain
unconditional moments

0 = E
{[

(qji − qji′ ) − ((
xi − γ̃ ′̃zi

)2 − (
xi′ − γ̃ ′̃zi′

)2)
mj − c̃′

j (̃zi − z̃i′ )

− (
δj − 2mj

(
α′q̂g,−ii′ +β+κ′̃zg

))((
xi − γ̃ ′̃zi

) − (
xi′ − γ̃ ′̃zi′

))]
rgii′

}
. (A18)

Combining common terms, we have

0 = E
{[

(qji − qji′ ) − (
x2
i − x2

i′
)
mj + 2(xĩzi − xi′̃zi′ )

′γ̃mj − γ̃ ′(̃zĩz′
i − z̃i′̃z

′
i′
)
γ̃mj

− (̃
c′
j − (δj − 2mjβ)γ̃ ′)(̃zi − z̃i′ ) − (δj − 2mjβ)(xi − xi′ )

+ 2mj

(
α′q̂g,−ii′ +κ′̃zg

)
(xi − xi′ ) − 2(̃zi − z̃i′ )

′γ̃mj

(
α′q̂g,−ii′ +κ′̃zg

)]
rgii′

}
. (A19)



14 Lewbel, Norris, Pendakur, and Qu Supplementary Material

From the above equation, for each j = 1, � � � , J − 1, mj can be identified from the varia-
tion in (x2

i − x2
i′ ), γ̃mj can be identified from the variation in xi (̃zi′ − z̃i ), δj − 2mjβ and

c̃′
j − (δj −2mjβ)γ̃ ′ can be identified from the variation in xi−xi′ and z̃i− z̃i′ ; mjαand mjκ

are identified from the variation in q̂g,−ii′(xi − xi′ ) and z̃g(xi − xi′ ). To summarize, γ̃ , α,
κmj , δj −2mjβ, and c̃′

j are identified for each j = 1, � � � , J−1, given sufficient variation in

the covariates and instruments. Let η = δ − 2mβ. As
∑J

j=1 mjpj = (e−b′ ln p )
∑J

j=1 dj = 0

and
∑J

j=1 ηjpj = ∑J
j=1 bj = 1, m and η are identified. Also, c̃J can be identified from

c̃J = (γ̃ − ∑J−1
j=1 c̃jpj )/pJ , and hence C̃, γ̃, α, κ, m, and η = δ − 2mβ are identified. We

now employ price variation to identify the remaining parameters.
Assume we observe data from T different price regimes. In the main text, each group

is observed only once, in a single price regime, so prices could just be subscripted by g.
Here, we allow for the greater generality of repeated cross-section data, where groups
could be observed more than once in different price regimes. To allow for this greater
generality, we add a t subscript to prices. Let P be the matrix consisting of columns pt

for t = 1, � � � , T . The above Engel curve identification can be applied separately in each
price regime t, so the Engel curve parameters that are functions of pt are now given t

subscripts.
Denote the parameters to be identified in R as (r11, � � � , rJJ , r12, � � � , rJ−1,J ) and b as

(b1, � � � , bJ−1 ). This is a total of [J − 1 + J(J + 1)/2] parameters. Given T price regimes,
we have (J−1)T equations for these parameters: δjt = bj/pjt , mjt = (e−b′ ln pt )dj/pjt and

βt = p1/2′
t Rp1/2

t for each j and T , since mjt and δjt − 2mjtβt are already identified. So for
large enough T , that is, T ≥ 1 + J(J+1)

2(J−1) , we get more equations than unknowns, allowing
R and b to be identified given a suitable rank condition. Once b is identified, dj is then
identified from dj = pjmje

b′ ln p for j = 1, � � � , J−1 and dJ = −∑J−1
j=1 dj . In our data, prices

vary by time and region, yielding T much higher than necessary.
We now formalize the above steps, starting from the Engel curve model without price

variation. This Engel curve model is

qi = x2
i m + (

γ̃ ′̃zĩz′
iγ̃

)
m + m

(
α′qg +κ′̃zg +β

)2 − 2m
(
α′qg +κ′̃zg +β

)(
xi − γ̃ ′̃zi

)
− 2mγ̃ ′̃zixi +

(
xi −β−α′qg − γ̃ ′̃zi −κ′̃zg

)
δ+ r + Aqg + C̃̃zi + D̃zg + vg + ui,

from which we can construct

qg = x2
gm + (

γ̃ ′zz′
gγ̃

)
m + m

(
α′qg +κ′̃zg +β

)2 − 2m
(
α′qg +κ′̃zg +β

)(
xg − γ̃ ′zg

)
− 2mγ̃ ′xzg + (

xg −β−α′qg − γ̃ ′zg −κ′̃zg
)
δ+ r + Aqg + C̃zg + D̃zg + vg;

q̂g,−ii′ = x̂2
g,−ii′m + (

γ̃ ′ẑz′
g,−ii′ γ̃

)
m + m

(
α′qg +κ′̃zg +β

)2

− 2m
(
α′qg +κ′̃zg +β

)(
x̂g,−ii′ − γ̃ ′̂zg,−ii′

)
− 2mγ̃ ′ẑxg,−ii′ +

(
x̂g,−ii′ −β−α′qg − γ̃ ′̂zg,−ii′ −κ′̃zg

)
δ

+ r + Aqg + C̃̂zg,−ii′ + vg + ûg,−ii′ .
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Hence,

εqg,−ii′ = q̂g,−ii′ − qg

= εx2g,−ii′m + γ̃ ′εzzg,−ii′ γ̃m

− 2m
(
α′qg +κ′̃zg +β

)(
εxg,−ii′ − γ̃ ′εzg,−ii′

)
− 2mγ̃ ′εzxg,−ii′ + δεxg,−ii′ +

(
C̃ − δγ̃ ′)εzg,−ii′ + ûg,−ii′ .

Pairwise differencing gives

qi − qi′ = (
x2
i − x2

i′
)
m + [

γ̃ ′(̃zĩz′
i − z̃i′̃z

′
i′
)
γ̃
]
m

− 2m
(
α′q̂g,−ii′ +κ′̃zg +β

)[
(xi − xi′ ) − γ̃ ′(̃zi − z̃i′ )

]
− 2mγ̃ ′(̃zixi − z̃i′xi′ ) + δ(xi − xi′ ) + (

C̃ − δγ̃ ′)(̃zi − z̃i′ ) + Uii′ ,

where the composite error is

Uii′ = ui − ui′ + 2mα′εqg,−ii′
[
(xi − xi′ ) − γ̃ ′(̃zi − z̃i′ )

]
.

Make the following assumptions.

Assumption B1. Each individual i in group g satisfies equation (A16). Unobserved er-
rors ui ’s are independent across groups and have zero mean conditional on all (xl, zl )
for l ∈ g, and vg are unobserved group level fixed effects. The number of observed groups
G → ∞. For each observed group g, a sample of ng observations of qi, xi, ziis observed.
Each sample size ng is fixed and does not go to infinity. The true number of individuals
comprising each group is unknown.

Assumption B2. The coefficients A, R, C = (C̃, D), b, d are unknown constants satisfying
b′1 = 1, d′1 = 0, d �= 0. There exist values of qg that satisfy

qg = x2
gm + (

γ̃ ′zz′
gγ̃

)
m + m

(
α′qg +κ′̃zg +β

)2 − 2m
(
α′qg +κ′̃zg +β

)(
xg − γ̃ ′zg

)
− 2mγ̃ ′xzg + (

xg −β−α′qg − γ̃ ′zg −κ′̃zg
)
δ+ r + Aqg + C̃zg + D̃zg + vg. (A20)

Assumption B1 just defines the model. Assumption B2 ensures that an equilibrium
exists for each group, thereby avoiding Tamer’s (2003) potential incoherence problem.
To see this, observe that if A �= 0 and J = 2, i.e., q is a scalar, then qg has the solution

qg = 1

2m(Ap)2

{(
2mAp

(
xg − γ̃ ′zg −κ′̃zg −β

) + 1 −A+pAδ
)

± [(
2mAp

(
xg − γ̃ ′zg −κ′̃zg −β

)
+ 1 −A+pAδ

)2 − 4m(Ap)2(mx2
g +mγ ′zz′

gγ +m
(
κ′̃zg +β

)2

− 2m
(
κ′̃zg +β

)(
xg − γ̃ ′zg

)
− 2mγ̃ ′xzg + (

xg −β− γ̃ ′zg −κ′̃zg
)
δ+ r + C̃zg + D̃zg + vg

)
)
]1/2}

, (A21)
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while if A does equal zero, then the model will be trivially identified because in that case
there aren’t any peer effects. From equation (A21), we can see qg is an implicit function of

x2
g, xg, zg, z̃g, zz′

g, xzg, and vg. In the case of multiple equilibria, we do not take a stand
on which root of equation (A20) is chosen by consumers, we just make the following
assumption.

Assumption B3. Individuals within each group agree on an equilibrium selection rule.

Assumption B4. Within each group g, the vector (xi, z̃i ) is a random sample drawn
from a distribution that has mean (xg, zg ) = E((xi, z̃i ) | i ∈ g) and variance 
xzg =( σ2

xg σxzg

σ ′
xzg 
zg

)
where σ2

xg = Var(xi | i ∈ g), σxzg = Cov(xi, z̃i | i ∈ g) and 
zg = Var(̃zi |
i ∈ g). Denote εix = xi − xg and εiz = z̃i − zg. Assume E((εix, εiz )|zg, z̃g, xzg, zz′

g, xg,

x2
g, vg, rg ) = 0 and is independent across individual i’s.

To satisfy Assumption B4, we can think of group level variables like xg, zg, and
vg as first being drawn from some distribution, and then separately drawing the in-
dividual level variables (εix, εiz ) from some distribution that is unrelated to the group
level distribution, to then determine the individual level observables xi = xg + εix and
z̃i = zg +εiz . It then follows from Assumption B4 that E(εxg,−ii′ | xi, zi, xi′ , zi′ , rg ) = 0 and
E(εzg,−ii′ | xi, zi, xi′ , zi′ , rg ) = 0. With similar arguments in the generic model, Assump-
tion B4 suffices to ensure that

E
(
εqg,−ii′

[
(xi − xi′ ), (̃zi − z̃i′ )

′]|xi, xi′ , zi, zi′ , rg
) =E(εqg,−ii′|rg ) · [(xi − xi′ ), (zi − zi′ )

′]
= 0.

Then we have the moment condition

0 = E
{[

qi − qi′ + 2m
(
α′q̂g,−ii′ +κ′̃zg

)[
(xi − xi′ ) − γ̃ ′(̃zi − z̃i′ )

] − (
x2
i − x2

i′
)
m

− γ̃ ′(̃zĩz′
i − z̃i′̃z

′
i′
)
γ̃m + 2mγ̃ ′(̃zixi − z̃i′xi′ ) − η(xi − xi′ ) + (

ηγ̃ ′ − C̃
)
(̃zi − z̃i′ )

]
|

xi, xi′ , zi, zi′ , rg
}

(A22)

for the Engel curves, where η = δ− 2mβ, and so

E

[
(qi − qi′ + 2e−b′ ln pt

d
pt

(
p′
tAq̂gt,−ii′ + p′

tD̃zg
)[

(xi − xi′ ) − p′
tC̃(̃zi − z̃i′ )

] − e−b′ ln pt
d
pt

× [(
x2
i − x2

i′
) + p′

tC̃
(̃
zĩz′

i − z̃i′̃z
′
i′
)
C̃′pt − 2p′

tC̃(zixi − zi′xi′ )
]

−
(

b
pt

− 2e−b′ ln pt
d
pt

p1/2′
t Rp1/2

t

)
× (xi − xi′ ) +

[(
b
pt

− 2e−b′ ln pt
d
pt

p1/2′
t Rp1/2

t

)
C̃′pt − C̃

]
(̃zi − z̃i′ )|

xi, xi′ , zi, zi′ , rg

]
= 0 (A23)

for the full demand system.
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We define the instrument vector rgii′ to be linear and quadratic functions of rg,
(xi, z′

i )
′, and (xi′ , z′

i′ )
′. Denote

L1jgii′ = (qji − qji′ ), L2jgii′ = q̂jg,−ii′(xi − xi′ ),

L3jkgii′ = q̂jgt,−ii′(z̃ki − z̃ki′ ), L4k2gii′ = z̃k2g(xi − xi′ ),

L5kk2gii′ = z̃k2g(z̃ki − z̃ki′ ), L6gii′ = x2
i − x2

i′ ,

L7kk′gii′ = z̃kĩzk′i − z̃ki′ z̃k′i′ , L8kgii′ = z̃kixi − z̃ki′xi′ ,

L9gii′ = xi − xi′ , L10kgii′ = z̃ki − z̃ki′ ,

(A24)

For � ∈ {1j, 2j, 3jk, 4k2, 5kk2, 6, 7kk′, 8k, 9, 10k | j = 1, � � � , J; k, k′ = 1, � � � , K,
k2 = 1, � � � , K2}, define vectors

Q�g =

∑
(i,i′ )∈�g

L�gii′rgii′

∑
(i,i′ )∈�g

1
.

Then for each good j, the identification is based on

E

(
Q1jg + 2mj

J∑
j′=1

αj′Q2j′g − 2mj

J∑
j′=1

K∑
k=1

αj′ γ̃kQ3j′kg + 2mj

K2∑
k2=1

κk2 Q4k2g

− 2mj

K∑
k=1

K2∑
k2=1

γ̃kκk2 Q5kk2g −mjQ6g −mj

K∑
k=1

K∑
k′=1

γ̃kγ̃k′Q7gkk′

+ 2mj

K∑
k=1

γ̃kQ8kg −ηjQ9g +
K∑

k=1

(ηjγ̃k − c̃jk )Q10kg

)
= 0,

where γ̃k is the kth element of γ̃ = C̃′p, κk2 is the k2th element of κ = D′p, and c̃jk is the
(j, k)th element of C̃.

Assumption B5. E(Q′
g )E(Qg ) is nonsingular, where

Qg = (Q21g, � � � , Q2Jg, Q311g, � � � , Q3JKg, Q41g, � � � , Q4K2g, Q511g, � � � , Q5KK2g,

Q6g, Q711g, � � � , Q7KKg, Q81g, � � � , Q8Kg, Q9g, Q101g, � � � , Q10Kg ).

Under Assumption B5, we can identify(−2mjα
′, 2mjα1γ̃

′, � � � , 2mjαJ γ̃
′, −2mjκ

′, 2mjκ1γ̃
′, � � � ,

2mjκK2 γ̃
′, mj , mjγ̃1γ̃

′, � � � , mjγ̃K γ̃
′, −2mj γ̃

′, ηj , c′
j −ηj γ̃

′)′

= [
E

(
Q′

g

)
E(Qg )

]−1
E

(
Q′

g

)
E(Q1jg )
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for each j = 1, � � � , J − 1. From this, α, κ, γ̃ , C̃, m, and η = δ − 2mβ are identified. To
identify the full demand system, let pt denote the vector of prices in a single price regime
t. Let

P = (p1, � � � , pT )′ and �= (
�′

1, � � � , �′
T

)′

with the (J − 1) × [J − 1 + J(J + 1)/2] matrix

�t =

⎛⎜⎜⎜⎜⎜⎜⎜⎝

1
p1t

0 · · · 0 −2m1tp′
t −4m1tp

1/2
1t p

1/2
2t · · · −4m1tp

1/2
J−1,tp

1/2
Jt

0
1
p2t

· · · 0 −2m2tp′
t −4m2tp

1/2
1t p

1/2
2t · · · −4m2tp

1/2
J−1,tp

1/2
Jt

. . .
...

...
...

...

0 · · · 0
1

pJ−1,t
−2mJ−1,tp

′
t −4mJ−1,tp

1/2
1t p

1/2
2t · · · −4mJ−1,tp

1/2
J−1,tp

1/2
Jt

⎞⎟⎟⎟⎟⎟⎟⎟⎠
.

Then we have

PA = (α1, � � � , αT )′, PD = (κ1, � � � , κT )′ and

�(b1, � � � , bJ−1, r11, � � � , rJJ , r12, � � � , rJ−1,J )′ =
⎛⎜⎝η1

...
ηT

⎞⎟⎠ ,

where ηt = (η1t , � � � , ηJ−1,t )′. Hence, we need the T × J matrix, P has full column rank
to further identify parameters in A and D; we need the (J − 1)T × [J − 1 + J(J + 1)/2]
matrix, � has full column rank to identify b and R. Once b is identified, we can identify
d. Using the groups that are observed facing this set of prices, from above we can identify
all parameters in A, C̃, D, b, d, and R.

Assumption B6. Data are observed in T price regimes p1, � � � , pT such that the T × J

matrix P = (p1, � � � , pT )′ and the (J − 1)T × [J − 1 + J(J + 1)/2] matrix, � both have full
column rank.

Given Assumption B6, A and D are identified by

A = (
P′P

)−1P′(α1, � � � , αT )′ and D = (
P′P

)−1P′(κ1, � � � , κT )′;

R and b are identified by

(b1, � � � , bJ−1, r11, � � � , rJJ , r12, � � � , rJ−1,J )′ = (
�′�

)−1
�′(η′

1, � � � , η′
T

)′
;

d is identified by dj = pjtmjte
b′ ln pt for j = 1, � � � , J and dJ = −∑J−1

j=1 dj .
To illustrate, in the two-goods system, that is, J = 2, this means that we can identify

A and D if the T × 2 matrix

P =
⎛⎜⎝p11, p21

...
p1T , p2T

⎞⎟⎠
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has rank 2 and the T × 4 matrix

�=

⎛⎜⎜⎜⎜⎜⎝
1

p11
, −2e−b′ ln p1

d1

p11
p11, −2e−b′ ln p1

d1

p11
p21, −4e−b′ ln p1

d1

p11
p

1/2
11 p

1/2
21

...
...

...
...

1
p1T

, −2e−b′ ln pT
d1

p1T
p1T , −2e−b′ ln pT

d1

p1T
p2T , −4e−b′ ln pT

d1

p1T
p

1/2
1T p

1/2
2T

⎞⎟⎟⎟⎟⎟⎠
has rank 4.

The above derivation proves the following theorem.

Theorem 2. Given Assumptions B1–B5, the parameters C̃, α, γ̃ , κ, m, and η= δ−2mβ in
the Engel curve system (A16) are identified. If Assumption B6 also holds, all the parameters
A, b, R, d, C̃, and D in the full demand system (8) are identified.

For the full demand system, the GMM estimation builds on the above, treating
each value of gt as a different group, so the total number of relevant groups is N =∑G

g=1
∑T

t=1 1 where the sum is over all values gt can take on. Define

�gt = {(
i, i′

) | i and i′ are observed, i ∈ gt, i′ ∈ gt, i �= i′
}

So, �ngt is the set of all observed pairs of individuals i and i′ in the group g at period
t. Let the instrument vector rgtii′ be linear and quadratic functions of rgt , (xi, z′

i )
′, and

(xi′ , z′
i′ )

′. The GMM estimator, using group level clustered standard errors, is then(
Â′

1, � � � , Â′
J , b̂1, � � � , b̂J−1, d̂1, � � � , d̂J−1,̂̃c′

1, � � � ,̂̃c′
J , , D̂′

1, � � � , D̂′
J , r11, � � � , rJJ , r12, � � � , rJ−1J

)′

= arg min

⎛⎜⎜⎜⎜⎜⎜⎝

T∑
t=1

G∑
g=1

∑
(i,i′ )∈�gt

mgtii′

T∑
t=1

G∑
g=1

∑
(i,i′ )∈�gt

1

⎞⎟⎟⎟⎟⎟⎟⎠

′

�̂

⎛⎜⎜⎜⎜⎜⎜⎝

T∑
t=1

G∑
g=1

∑
(i,i′ )∈�gt

mgtii′

T∑
t=1

G∑
g=1

∑
(i,i′ )∈�gt

1

⎞⎟⎟⎟⎟⎟⎟⎠ ,

where the expression of mgtii′ = (m′
1gtii′ , � � � , m′

J−1,gtii′ ) is

mjgtit ′ =
[
(qji − qji′ ) − ((

xi − γ̃ ′
t z̃i

)2 − (
xi′ − γ̃ ′

t z̃i′
)2)

mjt − c̃′
j (̃zi − z̃i′ )

− (
δjt − 2mjt

(
α′
t q̂g,−ii′ +βt +κ′

t z̃gt
))((

xi − γ̃ ′
t z̃i

) − (
xi′ − γ̃ ′

t z̃i′
))]

rgtii′

with

mjt = e−b′ ln pt
dj

pjt
, αt = A′pt , γ̃ t = C̃′pt , κt = D′pt ,

βt = p1/2′
t Rp1/2

t , δjt = bj

pjt
.
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For estimation, we need to establish that the set of instruments rgt provided earlier
are valid. For any matrix of random variables w, we have ŵgt· defined by

ŵgt· =

∑
s �=t

∑
i∈gs

wi∑
s �=t

∑
i∈gs

1

From Assumption B4, we can write ŵgt· = wgt· + εwgt·, where εwgt· is a summation of
measurement errors from other periods. Assume now that εwgt ⊥ (εwgt·, wgt· ).

As discussed after Assumption B4, we can think of (xi, zi ) as being determined by
having (εix, εiz ) drawn independently from group level variables. As long as these draws
are independent across individuals, and different individuals are observed in each time
period, then we will have εwgt ⊥ (εwgt·, wgt· ) for w being suitable functions of (xi, zi ). Al-
ternatively, if we interpret the ε’s as being measurement errors in group level variables,
then the assumption is that these measurement errors are independent over time. In
contrast to the ε’s, we assume that true group level variables like xgt and zgt are cor-
related over time, for example, the true mean group income in one time period is not
independent of the true mean group income in other time periods.

Given εwgt ⊥ (εwgt·, wgt· ), we have

0 =E
(
εqgt,−ii′

[
(xi − xi′ ) − γ ′

gt (̃zi − z̃i′ )
] | ŵgt·, xit , xi′t , zit , zi′t

)
,

because

E
(
qgt

[
(xi − xi′ ) − γ ′

gt (̃zi − z̃i′ )
](

x̂∗
gt,−ii′ − x∗

gt
) | x∗

gt , x∗x∗′
gt , vgt , wgt·, εwgt·, x∗

it , x∗
i′t

) = 0,

and

E
([(

x∗
i − x∗

i′
)](

x̂∗
gT ,−ii′ − x∗

gt
)′ | wgt·, εwgt·, x∗

it , x∗
i′t

) = 0;

E
([(

x∗
i − x∗

i′
)](

̂x∗x∗′
gt,−ii′ − x∗x∗′

gt
)′ | wgt·, εwgt·, x∗

it , x∗
i′t

) = 0,

where x∗ = (x, z′ )′. It follows that ( ̂x∗x∗′
gt·, x̂∗

gt·x̂∗′
gt·, x̂∗

gt· ) is a valid instrument for
q̂gt,−ii′ .

The full set of proposed instruments is therefore rgii′ = rg ⊗ (x∗
i − x∗

i′ , x∗
i x∗′

i − x∗
i′x

∗′
i′ ),

where

rg = (
̂x∗x∗′

gt·, x̂∗
gt·x̂∗′

gt·, x̂∗
gt·, x∗

i + x∗
i′ , x

2
i + x2

i′ , x
1/2
i + x

1/2
i′

)
,

for the Engel curve system, and rgtii′ = rgt ⊗ (x∗
i − x∗

i′ , x∗
i x∗′

i − x∗
i′x

∗′
i′ ), where

rgt = p′
t ⊗ (

̂x∗x∗′
gt·, x̂∗

gt·x̂∗′
gt·, x̂∗

gt·, x∗
i + x∗

i′ , x
2
i + x2

i′ , x
1/2
i + x

1/2
i′

)
.

for the full demand system.
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A.6 Identification and estimation of the demand system with random effects

The Engel curve model with random effects is

qi = x2
i m + (

γ̃ ′̃zĩz′
iγ̃

)
m − 2mγ̃ ′̃zixi + m

(
α′qg +κ′̃zg +β

)2

− 2m
(
α′qg +κ′̃zg +β

)(
xi − γ̃ ′̃zi

)
+ (

xi −β−α′qg − γ̃ ′̃zi −κ′̃zg
)
δ+ r + Aqg + C̃̃zi + D̃zg + vg + ui,

Therefore,

εqi′ = qi′ − qg = εx2i′m + γ ′εzzi′γm− 2mγ ′εzxi′ − 2m
(
α′qg +κ′̃zg +β

)(
εxi′ − γ̃ ′εzi′

)
+ δεxi′ +

(
C − δγ̃ ′)εzi′ + vg −μ+ ui′ ;

εqg,−ii′ = q̂g,−ii′ − qg = εx2g,−ii′m + γ ′εzzg,−ii′γm − 2mγ ′εzxg,−ii′ − 2m
(
α′qg +κ′̃zg +β

)
× (

εxg,−ii′ − γ ′εzg,−ii′
) + δεxg,−ii′ +

(
C − δγ̃ ′)εzg,−ii′ + vg −μ+ ûg,−ii′ .

By rewriting qji as

qji = mj

(
xi − γ̃ ′̃zi

)2 +mj

(
α′qg

)2 +mj

(
κ′̃zg +β

)2

− [(
2mj

(
xi − γ̃ ′̃zi −κ′̃zg −β

) + δj
)
α′ − A′

j

]
qg

− 2mj

(
κ′̃zg +β

)(
xi − γ̃ ′̃zi

) + δj
(
xi −β− γ̃ ′̃zi −κ′̃zg

)
+ rj + c′

j̃zi + D′
j̃zg + vjg + uji

= mj

(
xi − γ̃ ′̃zi

)2 +mjα
′q̂g,−ii′α

′qi′ +mj

(
κ′̃zg +β

)2

− [(
2mj

(
xi − γ̃ ′̃zi −κ′̃zg −β

) + δj
)
α′ − A′

j

]
× q̂g,−ii′ − 2mj

(
κ′̃zg +β

)(
xi − γ̃ ′̃zi

) + δj
(
xi −β− γ̃ ′̃zi −κ′̃zg

)
+ rj + c′

j̃zi + D′
j̃zg + vjg + uji + ε̃jgii′ ,

where

ε̃jgii′ = mjα
′(qgq′

g − q̂g,−ii′q
′
i′
)
α

− [(
2mj

(
xi − γ̃ ′̃zi −κ′̃zg −β

) + δj
)
α′ − A′

j

]
(qg − q̂g,−ii′ )

= −mjα
′[(εqg,−ii′ + εqi′ )q′

g + εqg,−ii′ε
′
qi′

]
α

− [
A′
j − (

2mj

(
xi − γ̃ ′̃zi −κ′̃zg −β

) + δj
)
α′]εqg,−ii′ .

and letting Ujii′ = vjg + uji + ε̃jgii′ , we have the conditional expectation

E(Ujii′|zi, xi, rg ) = E(vjg|zi, xi, rg ) −mjα
′E

(
εqg,−ii′ε

′
qi′|zi, xi, rg

)
α= μj −mjα

′	vα,
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where μj = E(vjg|zi, xi, rg ) = E(vjg ) and 	v = Var(vg|zi, xi, rg ) = Var(vg ). From this, we
can construct the conditional moment condition

E
[
qji −mjα

′q̂g,−ii′α
′qi′ −mj

(
xi − γ̃ ′̃zi

)2 −mj

(
κ′̃zg +β

)2

+ [(
2mj

(
xi − γ̃ ′̃zi −κ′̃zg −β

) + δj
)
α′ − A′

j

]̂
qg,−ii′

+ 2mj

(
κ′̃zg +β

)(
xi − γ̃ ′̃zi

) − δj
(
xi −β− γ̃ ′̃zi −κ′̃zg

)
− rj − c̃′

j̃zi − D′
j̃zg|xi, zi, rg

] = vj0,

where vj0 = μj −mjα
′	vα is a constant.

Let the instrument vector rgi be any functional form of rg and (xi, z′
i )

′. Then for any
i, i′ ∈ g with i �= i′, the following unconditional moment condition holds:

E
[(
qji −mjα

′q̂g,−ii′α
′qi′ −mj

(
xi − γ̃ ′̃zi

)2 −mj

(
κ′̃zg +β

)2

+ [(
2mj

(
xi − γ̃ ′̃zi −κ′̃zg −β

) + δj
)
α′ − A′

j

]̂
qg,−ii′

+ 2mj

(
κ′̃zg +β

)(
xi − γ̃ ′̃zi

) − δj
(
xi −β− γ̃ ′̃zi −κ′̃zg

) − rj − c̃′
j̃zi − D′

j̃zg − vj0
)
rgi

] = 0.

We can sum over all i′ �= i in the group g. Using the property of 1
ng−1

∑
i′∈g,i′ �=i q̂jg,−ii′ =

q̂jg,−i, then for any i ∈ g,

E

{
rgi

[
qji −mjα

′ 1
ng − 1

∑
i′∈g,i′ �=i

q̂g,−ii′q
′
i′α−mjx

2
i −mj γ̃

′̃zĩz′
iγ̃ −mjκ

′̃zg̃z′
gκ

+ 2mj γ̃
′̃zixi + 2mjκ

′̃zgxi + 2mjxiα
′q̂g,−i − 2mjγ̃

′̃ziq̂′
g,−iα− 2mjκ

′̃zgq̂′
g,−iα

− 2mj γ̃
′̃zĩz′

gκ+ q̂′
g,−i

[
(δj − 2mjβ)α− Aj

]
+ (2mjβ− δj )xi + z̃′

i

[
(δj − 2mjβ)γ̃−cj

] + z̃′
g

[
(δj − 2mjβ)κ− Dj

]
−mjβ

2 + δjβ− rj − vj0

]}
= 0.

Denote

L1jgi = qji, L2jj′gi = 1
ng − 1

∑
i′∈g,i′ �=i

q̂jg,−ii′qj′i′ , L3gi = x2
i , L4kk′gi = z̃kĩzk′i,

L5k2k
′
2gi

= z̃k2gz̃k′
2g

, L6kgi = z̃kixi, L7k2gi = z̃k2gxi, L8jgi = q̂jg,−ixi,

L9jkgi = q̂jg,−ĩzki, L10jk2gi = q̂jg,−ĩzk2g, L11kk2gi = z̃kĩzk2g, L12jgi = q̂jg,−i,

L13gi = xi, L14kgi = z̃ki, L15k2gi = z̃k2g, L16gi = 1.

For � ∈ {1j, 2jj′, 3, 4kk′, 5k2k
′
2, 6k, 7k2, 8j, 9jk, 10jk2, 11kk2, 12j, 13, 14k, 15k2, 16 |

j, j′ = 1, � � � , J; k, k′ = 1, � � � , K; k2, k′
2 = 1, � � � , K2}, define group level vectors

H�g = 1
ng − 1

∑
i∈g

L�girgi.
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Then for each good j, the identification is based on

E

(
H1jg −mj

J∑
j=1

J∑
j′=1

αj′αjH2jj′g −mjH3g −mj

K∑
k=1

K∑
k′=1

γ̃kγ̃k′H4kk′g

−mj

K2∑
k2=1

K2∑
k′

2=1

κk2κk′
2
H5k2k

′
2g

+ 2mj

K∑
k=1

γ̃kH6kg + 2mj

K2∑
k2=1

κk2 H7k2g

+ 2mj

J∑
j′=1

αj′H8j′g − 2mj

J∑
j′=1

K∑
k=1

aj′ γ̃kH9j′kg − 2mj

J∑
j′=1

K2∑
k2=1

aj′κk2 H10j′k2g

− 2mj

K∑
k=1

K2∑
k2=1

γ̃kκk2 H11kk2g +
J∑

j′=1

[
(δj − 2mjβ)αj′ −Ajj′

]
H12j′g

+ (2mjβ− δj )H13g +
K∑

k=1

[
(δj − 2mjβ)γ̃k − cjk

]
H14kg

+
K2∑

k2=1

[
(δj − 2mjβ)κk2 −Djk2

]
H15k2g − ξjH16g

)
= 0,

where ξj =mjβ
2 − δjβ+ rj + vj0.

Assumption B7. E(H′
g )E(Hg ) is nonsingular, where

Hg = (H211g, � � � , H2JJg, H3g, H411g, � � � , H4KKg, H511g, � � � , H5K2K2g, H61g, � � � , H6Kg,

H71g, � � � , H7K2g, H81g, � � � , H8Jg, H911g, � � � , H9JKg, H1011g, � � � , H10JK2g, H1111g, � � � ,

H11KK2g, H121g, � � � , H12Jg, H13g, H141g, � � � , H14Kg, H151g, � � � , H15K2g, H16g ).

Under Assumptions B1–B4 and Assumption B7, we can identify(
mjα1α

′, � � � , mjαJα
′, mj , mjγ̃1γ̃

′, � � � , mjγ̃Kγ̃
′, mjκ1κ

′, � � � , mjκK2κ
′, −2mj γ̃

′,

− 2mjκ
′, −2mjα

′, 2mjγ̃1α
′, � � � , 2mjγ̃Kα

′, 2mjκ1α
′, � � � , 2mjκK2α

′, 2mjκ1γ̃
′, � � � ,

2mjκK2 γ̃
′, A′

j − (δj − 2mjβ)α′, δj − 2mjβ, cj

− (δj − 2mjβ)γ̃ , Dj − (δj − 2mjβ)κ, mjβ
2 − δjβ+ rj + vj0

)′

= [
E

(
H′

g

)
E(Hg )

]−1
E

(
H′

g

)
E(H1jg )

for each j = 1, � � � , J − 1. From this, γ̃ , κ, α, m, η = δ − 2mβ, Aj , c̃j , Dj , and mjβ
2 −

δjβ + rj + vj0 for j = 1, � � � , J − 1 are all identified. Then AJ = (α−∑J−1
j=1 Ajpj )/pJ ,

c̃J = (γ̃ − ∑J−1
j=1 c̃jpj )/pJ , and DJ = (κ − ∑J−1

j=1 Djpj )/pJ are identified. Here, without
price variation, we can identify A and D. This is different from the fixed-effects model
because the key term for identifying A is Aqg, which is differenced out in the fixed-effects
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model, and only C̃ can be identified from the cross-product of qg and (xi, z̃i ). Further-

more, to identify the structural parameters b, d, and R, we need the rank condition in

Assumption B6(2).

With our data spanning multiple time regimes t, we estimate the full demand system

model simultaneously over all values of t, instead of as Engel curves separately in each

t as above. To do so, in the above moments we replace the Engel curve coefficients α,

β, γ̃ , κ, δ, rj , and m with their corresponding full demand system expressions, that is,

α= A′p, β = p1/2′Rp1/2, etc., and add t subscripts wherever relevant. The resulting GMM

estimator based on these moments (and estimated using group level clustered standard

errors) is then

(
Â′

1, � � � , Â′
J , b̂1, � � � , b̂J−1, d̂1, � � � , d̂J−1,̂̃c′

1, � � � ,̂̃c′
J , , D̂′

1, � � � , D̂′
J , R̂11, � � � R̂JJ ,

R̂12, � � � , R̂J−1J , μ̂, 	̂v,11, � � � , 	̂v,JJ , 	̂v,12, � � � , 	̂v,J−1,J ,
)′

= arg min

( T∑
t=1

G∑
g=1

∑
i∈�gt

mgti

T∑
t=1

G∑
g=1

∑
i∈�gt

1

)′
�̂

( T∑
t=1

G∑
g=1

∑
i∈�gt

mgti

T∑
t=1

G∑
g=1

∑
i∈�gt

1

)
,

where the expression of mgti = (m′
1gti, � � � , m′

J−1,gti ) is

mjgti =
{
qji −mjtα

′
t q̂gt,−ii′α

′
tqi′ −mjt

(
xi − γ̃ ′

t z̃i
)2 −mjt

(
κ′
t z̃gt +βt

)2

+ [(
2mjt

(
xi − γ̃ ′

t z̃i −κ′
t z̃gt −βt

) + δjt
)
α′
t − A′

j

]̂
qgt,−ii′

+ 2mjt

(
κ′
t z̃g +βt

)(
xi − γ̃ ′

t z̃i
) − δjt

(
xi −βt − γ̃ ′

t z̃i −κ′
t z̃gt

)
− rjt − c̃′

j̃zi − D′
j̃zg − vjt0

}
rgti

with

mjt = e−b′ ln pt
dj

pjt
, αt = A′pt , γ̃ t = C̃′pt , κt = D′pt , βt = p1/2′

t Rp1/2
t ,

ηjt = bj

pjt
−2mjtp

1/2′
t Rp1/2

t , δjt = bj

pjt
, rjt =Rjj + 2

∑
k>j

Rjk

√
pkt/pjt ,

vjt0 = μjt − e−b′ ln pt
dj

pjt

J∑
j1=1

J∑
j2=1

J∑
j=1

J∑
j′=1

Aj1jpj1tAj2j′pj2t	vt,jj′ .

Note that vjt0 are constants for each value of j and t that must be estimated along with

the other parameters. In our data, T is large (since prices vary both by time and district).

To reduce the number of required parameters and thereby increase efficiency, assume
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that μ =E(vgt ) and 	v = Var(vgt ) do not vary by t. Then we can replace vjt0 with

vjt0 = μj − e−b′ ln pt
dj

pjt

J∑
j1=1

J∑
j2=1

J∑
j=1

J∑
j′=1

Aj1jpj1tAj2j′pj2t	v,jj′

Moreover, since vgt represents deviations from the utility-derived demand functions, it
may be reasonable to assume that μ = 0. With these substitutions, we only need to esti-
mate the parameters 	v instead of all the separate vjt0 constants.

A.7 Generic model identification with observed network structure

Here, we consider extending the model to an application where network structure is ob-
served. Instead of assigning people to groups, the outcome of each individual now de-
pends on the mean of that specific person’s set of friends. As before, we may only observe
a small subset of each person’s friends, so the mean outcome of each person’s friends is
observed with error. We show that our method of handling nonlinearity, endogeneity,
and measurement error extends to this framework. Note, however, that since this struc-
ture no longer has groups, in this extension we drop the presence of group level fixed or
random effects.

Suppose we have full or partial information of a network WN , with Wij = 1 if i and j

are friends:

yi = (y−iNa+ xib)2d + (y−iNa+ xib) + ui,

where y−iN is the mean outcome of i’s friends, that is,

y−iN = 1
Ni

∑
j∈N

WijyjN

with Ni = ∑
j∈N Wij and

yjN = (y−jNa+ xjb)2d + (y−jNa+ xjb).

But we can only sample outcomes for a small subset n ⊂N , and hence replace y−iN with
an estimate

ŷ−in = 1
ni

∑
j∈n

Wijyj .

Notice that ŷ−in differs from y−iN in two ways: (1) the expected outcome of j’s friend yjN
is the replaced by the observed outcome yj ; (2) we can only take the weighted average of
the surveyed sample n, not the true sample N . We then get the decomposition:

y−iN − ŷ−in = 1
Ni

∑
j∈N

WijyjN − 1
ni

∑
j∈n

Wijyj = 1
Nini

(
ni

∑
j∈N

WijyjN −Ni

∑
j∈n

Wijyj

)
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= 1
Nini

(
ni

∑
j∈n

WijyjN + ni
∑
j /∈n

WijyjN − ni
∑
j∈n

Wijyj − (Ni − ni )
∑
j∈n

Wijyj

)

= 1
Nini

(
Ni

∑
j∈n

WijyjN − (Ni − ni )
∑
j∈n

WijyjN −Ni

∑
j∈n

Wijyj + ni
∑
j /∈n

WijyjN

)

= 1
Nini

(
Ni

∑
j∈n

Wij(yjN − yj ) + ni
∑
j /∈n

WijyjN − (Ni − ni )
∑
j∈n

WijyjN

)

= 1
ni

∑
j∈n

Wijuj + Ni − ni
Ni

(
1

Ni − ni

∑
j /∈n

WijyjN − 1
ni

∑
j∈n

WijyjN

)
.

Denote

ηiN = 1
ni

∑
j∈n

WijyjN − 1
Ni − ni

∑
j /∈n

WijyjN .

Then ηiN is difference between the average expectation of i’s observed friends and the
average expectation of i’s unobserved friends. If the sampled data is a random draw from
the full network, we will have E(ηiN ) = 0 and ηiN independent of u for all i as the sam-
pling is purely random. From this construction, we can see that

ŷ−in = y−iN +
(

1 − ni
Ni

)
ηiN − 1

ni

∑
j∈n

Wijuj

is again an unbiased estimator of y−iN . The measurement error contains two parts,
where the first part is purely random but the second part is constructed by the model
error u and will not vanish even if both Ni and ni increases.

If we now replace y−iN with ŷ−in, we have

yi = (ŷ−ina+ xib)2d + (ŷ−ina+ xib) + ui + εi, (A25)

where εi is given by

εi =
(
y2

−iN − ŷ2
−in

)
a2d + 2(y−iN − ŷ−in )xiabd + (y−iN − ŷ−in )a

=
(

1
ni

∑
j∈n

Wijuj −
(

1 − ni
Ni

)
ηiN

)

×
[(

2y−iN +
(

1 − ni
Ni

)
ηiN − 1

ni

∑
j∈n

Wijuj

)
a2d + 2xiabd + a

]
. (A26)

As before, this εi does not have zero conditional mean due to the quadratic term.
Since we no longer have groups, we cannot look at all pairs of observations within

a group. Instead, we can randomly split i’s observed friends into two subsets ni = n(1)
i +

n(2)
i and construct the sample mean from each subset

ŷ(1)
−in = 1

n(1)
i

∑
j∈n(1)

i

Wijyj and ŷ(2)
−in = 1

n(2)
i

∑
j∈n(2)

i

Wijyj .
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Then

ŷ(1)
−in = y−iN +

(
1 − n(1)

i

Ni

)
η(1)
iN − 1

n(1)
i

∑
j∈n(1)

i

Wijuj ,

ŷ(2)
−in = y−iN +

(
1 − n(2)

i

Ni

)
η(2)
iN − 1

n(2)
i

∑
j∈n(2)

i

Wijuj ,

and there are no common uj ’s in the two subsample averages. Then our model becomes

yi =
(̂
y(1)
−ina+ xib

)(̂
y(2)
−ina+ xib

)
d + (ŷ−ina+ xib) + ui + ε̃i, (A27)

where

ε̃i =
(
y2

−iN − ŷ(1)
−inŷ

(2)
−in

)
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−in − ŷ(2)

−in

)
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1
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n(1)
i

∑
j∈n(1)

i
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n(2)
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∑
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Wijuj −
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−
(
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)(
xiab+ a2y−iN

)
+

(
1
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∑
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Wijuj −
(

1 − ni
Ni

)
ηiN

)
a

We can then show that

E(ui + ε̃i | xi, xj ) = 0, (A28)

where xj are from those of i’s observed friends. With these moments, we can now con-
struct instruments as before for GMM estimation.

Appendix B: Preliminary data analyses

B.1 Generic model estimates

In other, nondemand settings, the generic peer effects model of Section 3 may be more
appropriate than the structural demand model. We implemented this model in Sec-
tion 4.2, but in this section describe the results in more detail.
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Table A1. Food spending as a function of group spending, generic model estimates.

RE FE

(1) (2) (3) (4)

a (peer mean expenditure) 0.142 0.131 −1.024 −1.077
(0.047) (0.046) (0.428) (0.442)

b (own expenditure 0.413 0.415 0.462 0.456
(0.011) (0.011) (0.019) (0.018)

d (curvature) −0.181 −0.182 −0.099 −0.067
(0.010) (0.010) (0.017) (0.012)

−a/b −0.344 −0.315 2.214 2.361
(0.118) (0.115) (0.928) (0.975)

p for −a/b = 1 0.000 0.000 0.191 0.163
Hausman for a 7.506 7.536
P-value 0.006 0.006
Individual controls No Yes No Yes
Number of pairs 128,640 128,640 128,640 128,640
Number of groups 4599 4599 4599 4599

Note: Dependent variable is household food spending. Individual controls include household size, age, marital status. and
amount of land owned. All models include price controls. Standard errors in parentheses and clustered at the group level.

As in the presentation in (12), yi is expenditures on food, yg is the true group-mean
expenditure on food, ŷg is the observed sample average, and xi is total expenditures.

We provide estimates using random-effects unconditional moments (21) and fixed-
effects unconditional moments (18). Define xg,−t to be the group-average expendi-
ture in other time periods. Fixed-effects instruments rgii′ are xg,−t , (xi − xii′ ), (xi −
xii′ )xg,−t , (x2

i − x2
ii′ ), (zi − zk ), (zi − zk )xg,−t , zg, zg(xi − xi′ ), 1. Random-effects instru-

ments rgi are xg,−t , xi, xixg,−t , x2
i , zi, 1. These instruments are constructed to mirror the

sources of identification in the FE and RE cases, respectively. Resulting GMM estimates
of the parameters are given in Table A1.

In the RE model, higher levels of peer food expenditure work in the same direction
as own expenditure; in effect making the household behave (in a demand sense) as if
it was richer when peer expenditures rise. Since this is not sustainable in equilibrium,
it is reassuring that in the FE specification, higher peer expenditure makes households
reduce their demand for food.

This difference between the models is a natural consequence of the group-level un-
observable taste for an expenditure category vg being correlated with expenditure in
that category. Unsurprisingly, the Hausman tests decisively reject the RE specification.

However, the peer effects in the FE specification are very large. Variation in peer ex-
penditure has over twice the effect of own expenditure on demand behavior (see the
estimates of −a/b), but we cannot reject equivalence of the two effects given the impre-
cision of the peer effect estimates. This is a potential consequence of excluding group-
average nonfood spending from the right-hand side. We take this as a reason to focus
on the structural estimates, which restrict behavior (including price responses) in a way
consistent with economic theory.
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Table A2. Subjective well-being summary statistics.

Mean SD Min Max

Income group 2 (= 1) 0.4 0.49 0 1
Income group 3 (= 1) 0.21 0.4 0 1
Income group 4 (= 1) 0.087 0.28 0 1
Income group 5 (= 1) 0.041 0.2 0 1
Group expenditure (1000 rupees) 5.6 2.6 2.8 18
Age 0.34 0.12 0.15 0.77
Sex 1.4 0.49 1 2
Household size 0.32 0.19 0 0.9
Married (= 1) 0.84 0.36 0 1
Primary education (= 1) 0.095 0.29 0 1
Secondary education (= 1) 0.13 0.34 0 1

Observations 5084

Note: Life satisfaction variable from the World Values Survey. Participants were asked “All things considered, how satisfied
are you with your life as a whole these days?” and asked to point to a position on a ladder. Coded as 1–5 in 2001 and 2006, and
1–10 in 2014. We collapsed to a 1–5 scale in 2014. Group income measured in thousands of Rs/month.

In both models, the estimated values of b is positive, and d is negative. As a result,
food budget shares are declining with expenditure, consistent with Engel’s law.

B.2 Subjective well-being and peer consumption

Our generic model estimates above are consistent with a theory in which increased peer
consumption decreases the utility one gets from consuming a given level of food, as sug-
gested by our theoretical model of needs. However, the generic model only reveals the
effect of peer consumption on one’s own consumption, not on one’s utility. For exam-
ple, it is possible that the success of my peers makes me happy rather than envious, or
peer consumption could increase the utility I obtain from my own consumption, for ex-
ample, my own telephone becomes more useful when my friends also have telephones.
In short, our needs model implies that peer expenditures induce negative rather than
positive consumption externalities.

To directly check the sign of these peer spillover effects on utility, we would like to
estimate the correlation between utility and peer expenditures, conditioning on one’s
own expenditure level. While we cannot directly observe utility, here we make use of a
proxy, which is a reported ordinal measure of life satisfaction.

Table A2 summarizes the 4th (2001), 5th (2006), and 6th (2014) waves of the World
ValuesSurvey. In each year, the surveyor asks the question, “All things considered, how
satisfied are you with your life as a whole these days?” Answers are on a 5-point ordinal
scale in the 5th wave, so we collapse all waves to a 5-point scale.

Neither wave of the survey reports actual income or consumption expenditures.
What this survey does report is position on a 10-point income distribution. The exact
cutpoints are undocumented, so we collapse the scale to five points for interpretability
and use dummies for the income groupings directly in our analysis.

For this analysis, we define groups by religion (Hindu vs. non-Hindu) and state of
residence (20 states and state groupings). These are much larger, more coarsely defined
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Table A3. Satisfaction on household and peer income.

OLS (SDs) Ordered Logit

(1) (2) (3) (4) (5) (6)

Income group 2 (= 1) 0.14 0.12 0.12 0.33 0.30 0.30
(0.06) (0.06) (0.06) (0.11) (0.12) (0.12)

Income group 3 (= 1) 0.36 0.33 0.33 0.80 0.74 0.75
(0.07) (0.08) (0.08) (0.15) (0.15) (0.15)

Income group 4 (= 1) 0.40 0.39 0.21 0.95 0.93 0.47
(0.10) (0.10) (0.19) (0.23) (0.23) (0.42)

Income group 5 (= 1) 0.52 0.51 0.33 1.19 1.17 0.71
(0.17) (0.17) (0.19) (0.42) (0.40) (0.45)

Group expenditure (1000 rupees) −0.15 −0.15 −0.16 −0.35 −0.34 −0.37
(0.07) (0.07) (0.07) (0.17) (0.18) (0.18)

Group expend X top 2 quintiles 0.03 0.07
(0.03) (0.06)

Controls No Yes Yes No Yes Yes

Observations 5084 5084 5084 5084 5084 5084

Note: Dependent variable as noted in column header, in SD. Subjective well-being data from World Values Survey, im-
putated group income from NSS. Peer groups defined as intersection of state and religion (Hindu and non-Hindu). Controls
include household size, age, sex, marital status, and education. All columns include year fixed effects. Standard errors in paren-
theses and clustered at the group level.

groups than we use for all of our other analyses. This is for two reasons: first, we do not
observe caste or geographic indicators smaller than states; and second, larger groups are
needed here because the WVS sample size is much smaller than the NSS and we have no
asymptotic theory to deal with small group sizes in this part of the analysis.

Table A3 presents estimates of well-being as a function of both own total expendi-
tures and group total expenditures, specified as

Ui =
5∑

s=2

βg1[Ii = s] +πx̂gt +Xigtα+ γg +φt + εigt , (B1)

where Ui is the z-normalized well-being indicator, 1[gi = s] is an indicator for individual
i belonging to income group s, x̂gt is imputed group expenditures, Xigt is vector of indi-
vidual level controls, γg is a group level fixed effect (groups are defined within states, so
this effectively includes a state fixed effect as well), and φt is a year fixed effect. Identi-
fication of π comes from group-level changes in expenditure between rounds, and cor-
responds to the change in self-reported utility as group income is rising versus falling,
holding own income constant. We also repeat this analysis using an ordered logit speci-
fication.

Results in the second column of Table A3 imply that satisfaction is increasing over
the entire range of individual expenditures, but that a 1000 rupee increase in peer ex-
penditure x̂gt decreases satisfaction by 0.15 standard deviations. Other specifications in
Table A3 give similar results. The signs of these effects are consistent with our model
of peer expenditures as negative consumption externalities. The magnitudes are also
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relative large (average peer expenditure is 5554, with a standard deviation of 2580), con-
sistent with our structural results.

Since well-being is reported on an ordinal scale, to check the robustness of these
results, we estimate the same regression as an ordered logit (see columns 4 and 5 of
Table A3). The results are qualitatively the same, suggesting that our results are not being
determined by the normalizations implicit in z-scoring the satisfaction responses. We
conclude that welfare is indeed increasing in household expenditure and decreasing in
peer expenditure.

Finally, we include an interaction term (the product of peer expenditures and the
individual being in the top two income groups) in the regression in columns 3 and 6,
and find its coefficient to be insignificantly different from zero, which is consistent with
our linear index modeling assumption.
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