Supplementary Material

Supplement to “Minimizing sensitivity to model

misspecification”
(Quantitative Economics, Vol. 13, No. 3, July 2022, 907-954)

STEPHANE BONHOMME
Kenneth C. Griffin Department of Economics, University of Chicago

MARTIN WEIDNER
Department of Economics, University of Oxford and Institute for Fiscal Studies

In Sections S1 and S2, we provide details about the proofs in the paper. In Section S3,
we describe our computational approach. In Section S4, we outline how to extend our
approach to models defined by moment restrictions. Lastly, we report additional simu-
lation and estimation results in Section S5.

S1. COMPLEMENTS TO MAIN RESULTS OF SECTION 2
S1.1 Proof of intermediate lemmas for Theorem 1

The proofs of the Lemmas A2, A3, and A4 are provided in this subsection. Before those
proofs it is useful to first establish one additional lemma.

LEMMA S1. Let Assumption Al hold. Let q.(y) and h¢(y, Bo, vs«) be sequences of functions
with sup,; cr.(y,) Ego, m|q(Y)|¢ = O(1), for some { > 1, and SUD eI () EBo 0|11 (Y, Bo,
v+)|2 = O(1). Then we have:

(i) Supﬁoere('}’*) |630v77(7*) - 830v770| = 0(61/2)’
(1) Supier.(yn) Ego mde(Y) = Egy (3, qe(Y)| = O(€'/?),

(111) SuprroeFe(Y*) HE.BOy’TTOhG(Y) BO’ ')/*) - EBOyW('}/*)hG(Y) Bo, ’y*) — (7T0 _ W(Y*),
Epo, whe (Y Bo, ¥2)Vr 108 fgo, miy) (V)] = 0(€7/%).

ProoFr oF LEMMA S1. # Part (i): By a mean-value expansion around = (vy,), we find

1880, m0 = 80, m(y)l = |0 = T(v4), Vardpo, 7 )| < |0 = 7(v:) g ., 1 V7OB0,7 19

where 7 is between 7 (vy,) and . Therefore,

Sup |6/30,7T0 - 8,60,77'(7*) | =< Sup || m — 77(')/*) Hind,y* Sup ||V7T§B(),7To ”'y*
mo€le (yx) mo€le (yx) mo€le (yx)
= 0('/%)0(1) = O(€'?).
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# Part (ii): Without loss of generality, we assume that { <2.Let £:={/({—1) > 2. We
then have

1/¢ l/é ¢ 1/2 1/2 2
/ |fl30y770(y) Bo W(V*)(y)| dy < / [fﬁo 770 fBo (7x) (y)] dy,
where we used that |a — b| < |a¢ — b¢|'/¢, for any a, b > 0 and ¢ > 1, and plugged in a =

féfm(y), b= fﬁlfﬁ(y y(»), and ¢ = £/2. Thus, the first part of Assumption Al(iii) also
implies

o=

sup { f fa06 s ) = fgfm)(y)lfdy} =0(e"?). (S1)

mo€le(ys)

Next, we find

sup }EBOr’”’OqE(Y) - EBOYW(V*)qE(Y”

WoEFe(Y*)
TBo,m0 ) = fBo, (v (V) 11 1
= sup er( ) B(;go li(;g = [fﬁéim(y) fﬁégn(w)(y)]dy
moele(v:) /Y fBO w0 V) = Loy )
fom) ~ SN
<{ sup /‘QE(Y)F I li(;,grro ,[i(}gw(v* dy}
mo€le (y4) fBO,wo(y) _fBO (Vs )(y)

1

3
| s [0 0 )

mo€le(y4)

-1

& xS

sf{ sup |qe(Y)|f-1|f,;0,m(y)+f30,w(y*)(y)|dy}
WOEFG(Y*) y

1

z
X{ Sup [’fééiro(” éfw(w)(y”gdy}

mo€le(ys)
1
1 1 ¢
=éf2 sup Epgymlac(M)|] { sup /|fﬁfm(y) ﬁé,gﬂ(y*)(y)ﬁdy}
mo€le(v+) mo€le (ys)
=o(1),

where the first inequality is an application of Hélder’s inequality, the second inequal-

ity uses that |fﬁl‘;§”°(y fﬁo w0 O ¢/6-1) < E/ED fg) o (9) + o miye (0)1,5] the last line
fﬁo 770 fﬁo ﬂ'(y*)(y)

uses that k = ¢£/(£ — 1), and the final conclusion follows from our assumptions and (S1).

SlFor a, b > 0, there exists ¢ € [a, b] such that by the mean value theorem we have (a¢ — b%)/(a — b) =
£ct1 < ¢max(aé~!, b¥~1) and, therefore, [(af — b§)/(a—b)]f/(§—” < £/ D max(aé, bf) < £5/E-D (af 4 b8,
which we apply here with a = fﬁ/gﬂ (y)and b= fﬁo ) V-
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# Part (iii): We have

Eﬁg,wohe(yr Bo, vx) — Eﬁo,w(y*)he(yy Bo, V)

—(mo — 7(v4)s Ego, m(ya) he (Y, Bos ¥4) Vi 108 fgg, iy, (Y))
- /y he (¥, Bos ¥)[f5o,m0 () — Foo. iy ()
— (0 — 7(v4)s Var 108 [, w(v,) () fBo, m(y,) (V)] dy

= /y he(, Bos ) f5om ) + F5 iy D]

1
% [fééim (0) = o iy ) = 5(mo = m(v:), Vo logfﬁm(y*)(Y))féé,zﬂ(y*)(y)} dy

_.,()
_'aBO,V*rTTO

1
+5 /y he(, Bo, ¥ F 5oy {70 = T(72), V108 fg, vy D) gt g ) = Fp iy )] -

_..(2)
_'aBo,y*,wo

Applying the Cauchy-Schwarz inequality and our assumptions, we find that

1) |2

Sup Bo, Y+ ™0

mo€le(v4)

54{ sup EBO,thE(Y,,Bo,’Y*)}
mo€le (74)

| s LU0~ 007000 Va1 0

WOEFE('Y*)
= 0(61/2),
and
2 2 9
Sup {a(Bo)yv*,'fro| = {Eﬁom(n)he(y» Bo, y*)}
mo€le(y4)
2
| s mo- ol
mo€le (y+)
2 1,172 1/2 2
X /y“vn—logfﬁom(y*)()’)”7*[](/3({’770()7) — Bérﬂ'()’*)(y)] dy}
=o0(€).
Combining this gives the statement in the lemma. 0

Proor oF LEMMA A2. Applying part (ii) of Lemma S1 with g¢(y) = Ae(y, Bo, v«) and us-
ing the unbiasedness constraint (2) we find that Eg,, -, 1< (Y, Bo, ¥«) = o(1), uniformly in
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mo € Fe(y4). Part (i) of Lemma S1 guarantees that [8g,, m, — 68y, =(y,)| = 0(1), uniformly in
7o € I'e(y4+). We therefore have

Ego,mo[he(Y s Boy s + 8y, m(y0) — 8gomo]
=Egy,m[e(Y, Bo, 7*)]2
—2(8By,m0 — 00, m(1:))EBo, mo N1e (Y, Bos i) + (8, — 530,7(%))2
=Epy,mo[he(Y, Bo, v:)]* +0(1),

uniformly in 7y € I'c (. ). Applying part (ii) of Lemma S1 with ge(y) = [he(y, Bo, v:)12, we

find that EBQ,WO [he(Yr BO; 7*)]2 = EBO,‘IT(’Y*) [he(Y, BO; ’Y*)]Z + 0(]-) = Vang,ﬂT(y*) (he(Yx BO;
v+)) + o(1), uniformly in 7 € I'<(y.), where in the last step we have also used that
he(y, Bo, v«) satisfies the unbiasedness constraint (2). Therefore,

2
sup ]Eﬁomo [hé(Y’ Bo, v«) + 6130,77(7*) - 530,770]
mo€le(ys)

:VarBOy’lT('Y*)(he(Yv BOJ ’)’*)) + 0(1) (82)

Using the unbiasedness constraint again, as well as Lemma S1(iii) and Assump-
tions A1(ii) and Al(iv) we find

sup |EBO,770he(Y’ Bo, v+) + 630,77(’)/*) - 5,80,770|
WOEFE('Y*)

= sup |(mo— 7(¥x), Egg,miyn) he (Y, Bos ¥5) Vi 108 f50, m(7.) (Y) = Vg, ()|
mo€le (ys)

+o(€'?)
=€e'2|E he(Y, Bo, ¥+)Vaxlogf (Y)— V56 + o(€'/?)
Bo,m(y:) el L5 50, V) Var 108 ] Bo, m(y:) OB, m(y4) |l y,

= be(he, Bo, v+) + 0(€'/?), (S3)

where in the last step we used the definition of the worst-case bias in (8) of the main text.
We furthermore have

2
]E,B(),’IT() @\(he) BO» 7*) - 830,770]

2

1 n

= ]E,Bo,ﬂ'o (; Z h(Yb BO! ’Y*) + 8,80,77(}/*) - 8,30,770)
i=1

2
= [Eﬁoyﬂoh(y’ Bo, ¥+) + 88y, m(y.) — BBo,wo]

1
+ ;Varﬂo,‘ﬁo [h(Y) BOI ')’*) + 8,30,77(}/*) - 630,770]

n—1 2
= T[Eﬁo,mh(y’ Bo, v«) — SBomTo + 5[30,77(3/*)]

1 2
+ ;Eﬁo,ﬁo [h(Yr Bos V<) + 6pg, w(v.) — 8B0,7To] .
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Taking the supremum of this last result over g € I'c(7y«), and then applying (52) and (S3)
gives

2
sup ]EBO,’TTO E\(he) ,80) V*) - 8.30v770:|
woeFe(V*)

Varg,, () (he(Y, Bo, ¥+))
n

= be(he, Bo, v:)* +

+ o(e),

which is the statement of the lemma. O

PROOF OF LEMMA A3. Letn= (8,7, 7:=(B,7),and 0. := (By> vs) - By a Taylor ex-
pansion in n around 7, we find that

1 ¢ ~
SMMSE § MMSE o~
55 28377(?) +; he (Yi, B, ’)’)
i=1

1 S
= Bgo,m(r) + ;hﬁm £(Yi, Bo, 74)
1=
(ﬁ_ n*)/[vn5ﬁo,w(v*) +EBQ,W(V*)Vnh1€\AMSE(Yx Bo, 'Y*)]

=r()

n

- 1
+ (1= 1) Y _[Vahe™ (Vi Bo, v4) = By, my Vol (i, o, 4]
=1

)
+ (1 = 1) [Ego, w(y) Vo hEMSE(Y, Bo, v4) — B, mo Vbt VSR (Y, Bo, v4)]
=r®3)
1 1 < -~
+ E(ﬁ—n*)/[;ZVE,n/h?MSE(Y,-, B, 7)}(?7—17*), (S4)
i=1

-

where 7 = (B, )’ is a value between 7 and 7. Our constraints (2) and (4) guarantee
that V85, 7(y.) + Ego, m(y.) Vo hYMSE(Y, Bo, v.) = 0; that is, we have () = 0. Using As-
sumption A2 and the Cauchy-Schwarz inequality, we furthermore find

(Eﬁovwo |r(2) |)2

n

1
; Z[VnhleleSE(Yh BO» ')’*) - ]E,Bo,'rrov‘r]hleVIMSE(Yi» ﬁOv 'Y*)]
i=1

<Ego,m |7 — n<I*Epgg, m

n 1 2 1
=Ego,mln— n*HZZEBoyTro ” Vnhlev[MSE(Y’ Bo, vs) ” = 0<?>,
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uniformly in 7y € I'e(y4), where in the second step we have used the independence of
Y; across i. Similarly, we have

@)

(Ego, mo|7 < Egy,m 17 — nll?

2
X ||Eﬁo,ﬁovnh2/[MSE(Yr BOI 7*) - EBO,W(Y*)vnhIEVIMSE(Yr BO) 7*)||

1 1
n n
uniformly in 7 € I'e(y4), where we have used that

sup [ Epy,m Ve ™ (Y, Bo, v4) = Epy,my) Vahe VOE(Y, Bo, v:) | = O(7%),
mo€le (v+)

which follows from Assumptions Al(iii) and A2(ii) by using the proof strategy of part (ii)
of Lemma S1. Finally, applying Holder’s inequality we have

1w ~
— D Vayh"E (Y B, )
i=1

Ego,m |[r™®| < Egy,mo {nﬁ— 7.2

1 ~
— D Vayh Y B )
i=1

X x=2
2 X—2 X
< {E,Bo,#o”n_n*”)(}x{E,Bo,‘ﬂo }
1
-of3)
n

uniformly in 7 € I'c(7,), where we have used Assumption A2(iii). We have thus shown

that
1 1
sup  Egy,m | 4+ 7@ 4@ 4 2@ = O(—),
mo€le(v+) 2 n
which together with (S4) gives the statement of the lemma. 0

The proof of the next lemma uses the following theorem of Petrov (1975), which gen-
eralizes the Berry-Esseen theorem to sample averages of random variables without a
third moment.

THEOREM S1 (Theorem 5 on p. 112 in Petrov (1975)). Let Xy, ..., X, beindependent ran-
dom variables, such that EX; =0, E(X]?g(|Xj|)) <ooforj=1,...,n, and for some func-
tion g : [0, 00) — [0, co) such that both g(x) and x/g(x) are nondecreasing for x > 0. We
write

n n
UJZIEXJZ, anza'z, Fn(x):Pr(B;UZZXj<x>'
=1 =1
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Then there exists an absolute constant A > 0 such that

ZE X2 g(X ).

sup|Fp(x) — ®(x)| <

n(f)

Proor OoF LEMMA A4. # Preliminaries: We first establish some preliminary results on
the sample averages of

he(Yi, Bos Yer 70) := he(Yi, Bo, v+) — Ego, mohe(Yi, Bo, ¥+)-

According to our assumptions, the ZE(Yi, Bo, v+, mo) are independent random variables
with zero mean and finite absolute moments of order « > 2, under Py = P(Bo, 7). By
applying the result in Dharmadhikari and Jogdeo (1969), we thus find thatS2

K

Z he(Yi, Bo, Y+ 0)
[ i=1
where the constant C,, > 0 only depends on . Through a combination of the Minkowski
and Holder’s inequalities, we find that our assumption SUP 7 €T (72) Egy,mlhe(Y, Bo,
v:)|“ = O(1) also guarantees SUP 7 €T (v4) Eg,, 770|h (Y, Bo, v«)|* = O(1). We therefore ob-
tain that

EBO'WO <C ]EB() 7T()|h (Yh BO) Vs

1 <~
= ZhG(Yl) BO! V) 7T0)
\/ﬁ i=1

Next, we apply Theorem 5 of Chapter V in Petrov (1975), which is restated above as The-
orem S1, with X; equal to h¢(Y;, Bo, v+, 7o) and g(x) = x™nL.x=2} (o find that

) =0(1). (S5)

sup : <Eﬁov ™

mo€le (y4

n
ZhE(Yir BO) Vx> 770)
i=1
sup sup|Pg,, - <x|—-®x)|=o0(1),
moele(yx) xeR Fom Vna(Bo, ¥ m)

where o2 (Bo, vx, m0) = Egy, m EE(Y,-, Bo, ¥, ™). This, in particular, implies that

sup Pg,, WO(‘[Zh (Yi, Bo, Ys» m0) >10g(n)> =o(1). (S6)

mo€le (y4)

By an application of Holder’s inequality we find that (S5) and (S6) also imply

2
1 G~
sup E E h (Yi, Bo,v+) | 1 —E he(Yi, Bo, v«)| > logn
o€l e (y4) For 77-0|:<\/_ l . \/ﬁ i=1 l -

=o(1). §7)

S2This result is an extension of the Bahr—Esseen inequality to moments larger than two. See also inequal-
ity number 16 on page 60 of Petrov (1975).
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Finally, we notice that

SUP 8y, 7(3) — 8o, m + Epo,mo /e (Y, Bo, v:)| = O(e'?), (S8)
mo€le(v4)

which follows by applying part (i) and (ii) of Lemma S1 with g.(y) = h(y, Bo, y«) and
noting that Eg ~(y,)#e(Y, Bo, v+) = 0 by the unbiasedness constraint (2).

# Main result of the Lemma A4: Having established those preliminary results, we
now derive the statement of the lemma. Define

1 n
kn = Zhe(Yi; BO: 7*) + ﬁ[SBO,w(y*) - 630,71'0]
vnis

| QLI
= ﬁzhe(Yi,BO’ y*)+\/ﬁ[830r”(7*) _830v770+]EBO.770h€(Yi1 BO) ’Y*)]-
i=1

The decomposition of 35 in (A2) can then be rewritten as
Vn(8e — 8B,m) =kn + Ry.
We have
NE gy, mu (B = g0, m)*1(1Be — 80, m| = )]

=Egy, m[ (kn +Rn)2]l(|kn + Ryl < nl/zmn)]
= IEBO’T’Ok2 - EBOJTO [ki]l(|kn + Ryl > nl/Zmn)]

n

=term [

+ Ego, m[ (RS + 2knRa) 1(1kn + Ryl < n'/2my)].

=term Il

Thus, Lemma A4 is proved if we can show that term I is o(1), and that term II is larger
or equal to minus o(1), both uniformly over 7y € I'c(7y.). For term I, we use Holder’s
inequality to obtain that

sup  Egg,m [kfl]l(lkn + Ryl > nl/zmn)]
mo€le(v+)

2 k=2
5{ sup (Eﬁo,ﬂo|kn|")K}{ sup  [Egg,mL(lkn + Ral >n1/2mn)] x }
moel’e(y4) mo€le(y4)
K>g

+ sup  (n'%[8py,m(v.) — 880, + Epo,mhe(Yir Bo, 7*)|)}

1 -~
- = hGYi» y Vxk
ﬁ; (Yi, Bo, vx)

=0(1)

5: sup (Eﬁoyﬂo
moele(v+)

moele(ys)

=0(1)
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K=2

1 1 T
x H sup Ego,won(|k,,| > Enl/?-mn> + sup EB0,701(|R,1| > Enl/zm,lﬂ }
mo€le (v4) mo€le (v4)

=o(1) =o(1)
=o(1),
where we also used the definition of k, together with the triangle inequality, and we
employed (S5), (S6), and (S8) and Assumption (ii) of the lemma, together with our as-
sumption that n'/?2m,, > log(n) as n — oc.
Next, for term II we use that R% + 2k, R, is positive whenever |R;| > 2|k,| to obtain
that
E,Bg,ﬂ'g [(Ri + anRn)]l“kn + Ryl < nl/Zmn)]
=Egy, mo[ (RS + 2knRn)1(Ikn + Ral < n'/2mu)1(IR,| < 21knl)]
+ Ego,mo[ (RE + 2k Ry)1(kp + Rl < n'/2mp)1(|1Rnl > 21ksl)]
>0
= EBOv‘“’O[(Ri + anRn)]l(“Cn + Ryl < nl/zmn)]l(|Rn| < 2|kn|)]
> —2E gy, m [|knl IRl L(IRA| < 2[knl)]

= _Z{EBO,Woki}l/z{EBovﬂo [th]l(lRﬂ| = 2|k"|)]}1/2

where in the last step we also used the Cauchy-Schwarz inequality. Our preliminary re-
sults (S5) and (S8) imply that sup,; r_(y,) Ego, m 2 — O(1). Furthermore, we have
Epo, mo[RiL(1Rn| < 21kn])]
= Epo, m[RpL(1Ral < 21knl)1(1kn| <logn)]
+Ego,m[REL(IRn| < 21knl)1(1kn| > logn)]
< By mo[R21(IRn| < 210gn)] + 4B gy, mo [K21(Ikn| > logn)]
=o(1),

uniformly over 7y € I'c(y,), where we used (S7) and Assumption (v) of the lemma. We
thus conclude that term II indeed satisfies

sup  {—Egy,m [(Rf, + 2k Rp)1(lkn + Ryl < nl/zmn)]} <o(l).
mo€le(ys)

Combining the above gives the statement of the lemma. O

S1.2 Lemma Al

Notation For the proof of Lemma Al (which assumes the locally quadratic case of Sec-
tion 3), it is convenient to introduce some further notation. We assume that there exists
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amap (,, : T — T such that, forallve T,

2
1912,q,, = (v Qy,0).
We assume that (), is invertible, and write Q;*l : T — T for its inverse. The map Q;*l
is exactly the “transposition” map introduced less formally in the main text; that is, for
ueT wehave u' = Q;*lu € T. Thus, our norm on the cotangent space from the main
text |[ul|5, = u" u can now be written as

Il = (05w, u).
The norm || - ||, is dual to || - [|ing, ,; that is, we have

(v, u)
lully, = sup — =
v€7_’\{0} ”U”lnd,'y*

Notice also that || - [ling, y,, Il - lly,, 2,, and Q;*l could all be defined for general 7 € I1, but
since we use them only at the reference value 7 (vy,) we index them simply by v..

The vector norms | - lind, y,» Il - Iy, and [| - [| on 7, 7 and R4mA+dim¥ jnduce natural
norms on any maps between 7, 7 and R4mB+dimy_Wwith a slight abuse of notation, we
denote all those norms simply by || - ||, . In particular, for Q;*l : T — T we have

15 ul); O lu,, u)'?
”Q;} ”y = sup 7y “lindys M _1, (S9)
Y ueT\{0} l[lly, ueT\{0} llzelly,
and for H,, g, : RAmA+dimy _, 7" defined in Section 3.1 we have
H w v, H w
1H oz, pylly, = sup M = sup sup M
weRdim B+dimy\ (0} [wll vET\{0} weRdim B+dimy\ {0} lvllind, Vs flw]]

Using Assumption Al(v) and the Cauchy-Schwarz inequality, we find that

||H771B7 ”')’* = “EBO:"T(')’*) {[Vﬂ- longOvW('Y*) (Y)] [Vﬁ'y lOg fBOyﬂ'(')’*) (Y)]/} “ Vi

= [Epy, my.) [V 10g £y, iy () ”f/*]l/z [Eo, n(v.0 | Vay 108 fgo, my.) (V) HZ]

=0(1). (510)

1/2

Proor orF LEMMA Al. Equation (20) in Lemma 1 in the main text provides an explicit
solution for ”MMSE(y By, v,), which in the notation of this Appendix can be written as

hlevIMSE(y’ Bo, v«) = [Vﬁysﬁom(w)]/HE; [VB’Y IngBom(v*)(y)]

+{[Hry, + (en) 10,17 V288, m(.) Vo 10g f, ) (D)),
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where V7108 fgo, n(v) () = Val0g fao,m()(Y) = Ham,pyH gy Vpylog fgy,ny.)(y) and
Var8g0,m(v) = Vardpo, w(v) — Hor, gy H gy Vy 8o, m(y,)- We thus have

|1E™SE(y, Bo, ¥:)| < 1V8y8 0, wtv | [H gy | [V 108 f0, w0 )]

+(en) ] Q)

Vs ||V7T8B0v77('}’*) ”7* Vﬂ' longO,ﬂ'(')’*)(y) || 'y*’

where we used that |[H,Q,, + (en)"'Q, 171, < (en) 1951, because both H,Q,, and
(1,, are positive semidefinite. We furthermore have

”677530'77(7*)”7* < | Valog fao, mivo )| v T 1H z, gylly. H/E; IIVey10g fgo,mtv) D),

[Va IngBom(v*)(y)”W < IVadpo,m(yo) v + 1Ham,pylly, H[;; 11Vgy8g0, iy -

Combining those inequalities with our Assumption A1(ii) and (v) as well as the results
(S9) and (S10) above, we find that

2
sup  Egy, o [AYMSE(Y, Bo, v:)]T = O(1).
WOEFE(Y*)

S1.3 Lemma 1

Before deriving the equivalent characterizations of hIEV[MSE( ¥, Bo, v«) given in the lemma
we note that the optimization problem (10) that defines /MMSE(y, 8y, y,) has a unique
solution (up to possible deviations on a measure zero set of y’s, which are irrelevant
for our purposes). This uniqueness follows, because under the unbiasedness constraint
(2), we have Varg, (,.)(h(Y, Bo, v+)) = Eg,, #(y.)#*(Y, Bo, ¥«), which is quadratic and
strictly convex in &(y, Bo, y«), while all other components of the objective function and
constraints in (10) are linear in A(y, Bo, ¥«)-

Equation (18) Using simplified notation here, our goal is to find the function A(y) =
h(y, Bo, vs) that minimizes

ER?(Y) + (en){ V8 — E[A(Y)s,(Y)]} [V — E[A(Y)s,(V)]},

subject to the constraints EA(Y) =0 and EA(Y)sgy(Y) = Vg,6.
Using the latter constraint and the definition of V,, we can equivalently rewrite the
objective function as

ER2(Y) + (em){V8 — E[h(Y)5,(V)]} {V,8 — E[h(Y)5,(Y)]}
+2{Vpyd —E[A(Y)spy(Y)]} Hg) Vy 5.

The unconstrained minimizer of this rewritten quadratic objective function satisfies
the first-order condition

HYMSE(y) = spy () Hgy Vyd + (en)3 ()T (V8 — E[AYMSE(Y)5(V)]},

and because Esg, (Y) =0, Es;(Y) =0, and E[sg, (Y)sg,(Y)'] = Hg,, we find that this un-
constrained minimizer already satisfies both constraints EA(Y) =0 and EA(Y)sg,(Y) =
Vg, 6, and is therefore also the constrained minimizer that we wanted to derive.
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Equation (19) Note that, by (18), we have h/MMSE(y) = Sﬁyiy)/HB_;Vﬁya +57(») Tu, for
some u € T, and one can easily verify that this implies that V6 — E[hL\AMSE(Y)EW(Y)] is
equal to the same expression with 5, replaced by s,,.

Equation (20) We have already shown that equation (18) is the FOC of the minimiza-
tion problem (10). We now want to show that the solution for AMMSE(y) given in equa-
tion (20) satisfies the FOC (18), which implies that it solves (10). Equation (18) can be
rewritten as
hEMSE(y) = spy (1) Hpg, Vpyd + (€n)52 (1) T, S
u:= V8 — E[RMMSE(yy5. (V)]

Plugging the expression for /MMSE(y) given by equation (20) into this definition of u and
using that E[5, (Y)5,(Y) "] = H,, and E[s7(Y)sgy(Y)'] =0, we find that (20) implies that

u=Y,8—H.[H,+(en) 1] 'V,

={1— H,[H, + (en) 1] "}V, 8
={[Hr + (en) M][H, + (en) ] ' = H,[H, + (en)™ 1] '}¥,8
= (en) " [Hy + (en) 1] ' ¥V,5.
This expression for u makes the first equation in (S11) equivalent to (20). Therefore, we

have shown that AMMSE(y) as given by (20) indeed solves (18) and, therefore, also our
optimization problem in (10).

S1.4 Lemma 2

Our goal is to choose the function 4(, -, 8, v, fx) such that the worst-case mean squared
error

S 2
sup Eﬁomo,fx[(Sh — 8By, 0, fx ) ]
WOEFE(Y*)

is minimized for small values of €, subject to unbiasedness under the reference model,
and also subject to local robustness constraints to account for the fact that By, v., and
fx are estimated from the sample.

Unbiasedness is

EfXEBO:Tr(’)’*)h(Y’ X, Bo, v« fx) =0, (S12)
while local robustness is

Er Egy, m(y) B(Y, X, Bo, V5 fx)Vpylog fgy, m(y.) (Y]X)
=E 1y Vydgo, m(1.) (X)), (S13)
EBOvW(Y*)[h(Y’ X» BO! V> fX)lX = X] = 830,77(7*)()(3) — EfXSBOJT(V*)(X)'
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The minimum-MSE influence function satisfies
h'IEVIMSE() “y B()v ')’*» fX)

= argmin {eﬂEfX Vadpy, (v, (X)
h(,- Bo, Ve fx)

2
- EfXEBOr’fT('Y*)h(Y’ X, Bo, Y [x)Vr longOyW(v*)(YlX)” Ve

N Efy Varg, (y,) (A(Y, X, Bo, ¥+ fx)|X)
n

} subject to (512) and (S13).

In the locally quadratic case, following similar derivations as for equation (18) in

Lemma 1, we obtain (21).

S1.5 Corollary 1

This is a direct implication of (20).

§1.6 Corollary 2

This is a direct implication of (19).

§1.7 Corollary 3

Lemma 2 implies, analogously to (19), that

RMMSE () ) — §(x) — B, 8(X) + sﬂ,y(ylx)/[EfXHﬁy(X)]_lEfxVBVS(X)

+ (€n)5 (y|x) {Ef, V2 8(X) — Ep, E[AYMSE(Y, X)s5,(Y|X)]}.

(S14)

Since A4 and X are independent, Ef, V,8(X) can be represented by the function

a>Ep [Ala, X)] — Ef, 6(X).

Likewise, E, E[AMMSE(Y, X)s,(Y|X)] can be represented by the function

ar> B E[IMMSE(Y, X)A=a, X] =T (a).

€

Moreover, we have for any cotangent element u (a function of a),

S (y|0) Tu=E[u(A)|Y =y, X =x] — E[u(A)]

— 5py (Y1) [Epy Hpy (X)) Ep E[spy (Y X)u(A)].

Corollary 3 then follows from evaluating (S15) at

u(a) =By, [Ala, X)] —Ep 8(X) — o ().

(S15)
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S1.8 Corollary 4

Let us start again from (S14). In the correlated case, E fx Va8(X) can be represented by
the function

(a, x) = Ala, x)fx(x) — 6(x) fx (x).
Likewise, E fXE[hE’IMSE (Y, X)s(Y|X)] can be represented by the function

(a,x) > E[AMMSE(Y, X)| A = a, X = x]fx(x) — E[RMMSE(Y, X)|X = x]fx (x)
= e ™ (g, ) fx (x) — E[AMMSE(Y, X)X = x]fx (x).
Now, by (S§13) we have
E[AMMSE(Y, X)|X = x] = 8(x) — Ef, 8(X). (S16)

Hence, Ef, V-6(X) — Ef, E[ThMMSE(Y, X)s,(Y|X)] can be represented by the function

(a, %) > Ala, ) fx (x) — Ep, 8(X) fx (x) — Fe > (a, ) fx ().

In the present case, cotangent elements are functions of ¢ and x. The corresponding
squared dual norm is%3

» u(A, X) —E[u(A4, X)|X]\?
Il _EfXE[( fr (X) '

In addition we have, for any cotangent element « (a function of ¢ and x),

~ A, X) u(A4, X)
b= Sy x —x| 5| G I =
SO0 =R TGy Y= X = Fex) =
/ -1 u(A4, X)
— 58y W|xX) [Efy Hpy(X)] EfX]E[sBy(Y|X)W]. (S17)

Corollary 4 then follows from evaluating (517) at

u(a, x) i= Ala, x)fx (x) — Ep, 8(X) fx (x) — e (a, ) fx (%),

and noting that, by (S16), E[u(A4, X)|X =x] =0.

S2. COMPLEMENTS TO SECTION 3
S2.1 Dual of the Kullback-Leibler divergence

Let A be a random variable with domain A, reference distribution f,(a) and “true” dis-
tribution fy(a). We use notation f,(a) and fy(a) as if those were densities, but point

$3This can be shown as in Section S2.1, with the difference that here twice the KL divergence reads, using
the notation of that subsection, d(fy, fi) = —2E, Eqlog ;;EQIQ
defining g as the joint distribution of (A4, X), and imposing the constraint that amo(a, x)da= fx(x).

. Alternatively, Corollary 4 can be derived by
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masses are also allowed. Twice the Kullback-Leibler (KL) divergence reads

f+(A)
fo(A)’
where Ey is the expectation under fj. Let 7 be the set of all distributions, in particular,

f e Fimplies [, f(a)da=1.Let q: A— R be a real valued function. For given f, € F
and € > 0, we define

d(fo, f«) = —2Eglog

) Eoq(A) —E.q(A)
lglls e = max )
{foeF:d(fo, f)<e} Ve

where E, is the expectation under f,.
We have the following result.

LEmmaA S2. For q: A — R and f, € F we assume that the moment-generating func-
tion m,(t) = E,exp(tq(A)) exists for t € (6_, 61) and some 6_ < 0 and 64 > 0.5* For
€ € (0, %), we then have

1G]+, = /Var.(g(A)) + O(e?).

Prookr. Let the cumulant-generating function of the random variable g(A) under the
reference measure f, be k. (t) = logm.(t). We assume existence of m,(t) and k. (¢) for
t € (6_, 64). This also implies that all derivatives of m.(¢) and k,(¢) exist in this interval.
We denote the pth derivative of m. () by mip ) (1), and analogously for k. (¢).

In the following, we denote the maximizing fy in the definition of | ||, simply by
fo. Applying standard optimization method (Karush-Kuhn-Tucker), we find the well-
known exponential tilting result

fo(a) = cfi(a) exp(tq(a)),

where the constants c, ¢ € (0, co) are determined by the constraints | 4 fo(a)da=1and
d(fo, f«) = €. Using the constraint [ 4 fo(a)da =1, we can solve for ¢ to obtain

B f«(a)exp(tq(a)) B f«(a)exp(tq(a))

fola) = E. exp(tq(A)) - My (1)
Using this, we find that
d(t) :==d(fo, f+)
fo(A) . fo(A)
=2E, 1
f(A) 8 (A
2t _210gm*(t)
o B exp(1a(A))q(A) — — =B exp(1g(A)

S4Existence of m.(¢) in an open interval around zero is equivalent to having an exponential decay of the
tails of the distribution of the random variable Q = g(A4). If g(a) is bounded, then m.(#) exists for all 7 € R.



16 Bonhomme and Weidner Supplementary Material
_2tmD ()
B my (1)
=2[tkV (1) — k.(1)].

— 2logm, (1)

We have d(0) = 0, dV(0) = 0, d®(0) = 2k?(0) = 2Var,(q(A)), d3 () = 4k (1) +
2tk™ (). A mean-value expansion thus gives

3
d(t) = Var,(q(A))t* + %[4/&3) (O +2ikM (D],

where 0 < 7 <t < 6. The value ¢ that satisfies the constraint d(¢) = e therefore satisfies

D=

= L O(e).

Var, (q(A))

Next, using that ||qls,e = e—%E*[(jﬁgﬁjg —1)q(A4)] we find
Igle =€ 2[kD () — kD (0)].

Again using that ksz) (0) = Var,.(gq(A)) and applying a mean value expansion, we obtain

1qllse =€ 2 [tkﬁf)(t) + %tzkfki)}

€2 [tVar* (q(A) + %tzkf‘)(f)}

= JVar,(q(4)) + O(e?),

where 7 € [0, 1]. O

S2.2 Equations (25), (26), and (27)

Here, we use simplified notation as in Section 3. Let us start by deriving (25). In this case,
Bo and vy, are known, and Corollary 2 gives

AYMSE = (€n)E 41y[A — 8 — By 4 hMMSF],
S0
RYMSE [ (en) "My + E 41y 0 Eyja]” EgplA — 8.
(25) then follows from the operator identity:

— -1 - -1
[(en) l]Iy +Ey yo EylA] Eqy= ]EA|y[Ey|A oE 4y + (en) l]IA] .

Let us now derive (26). In this case vy, is known. Since A(A) = ¢’By = §, Corollary 2
implies

—MMSE

WYNSE(y) =gy (y) Hp e — (em) (B[R (A)]Y = y] — sy (y) Hp [ E[sgy (VR ()]}
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Hence, we have, for some vector b,

hIEVIMSE =S,37(y)/b — (EH)EA|y o Ey|_AhMMSE.
Using the Woodbury identity,

-1 _ -1
[Hy—i— (EH)EA|3;OE3;|A] =1y —]EA|y[]Ey|_AOEA|y+ (en) 1HA] Ey|_A,
—Te

we thus obtain
hIEVIMSE =W¢sgy(»)'b.

Lastly, since by (4) E[AMMSE(Y)s5,(Y)] = ¢, we obtain (26) whenever the denominator is
nonsingular.

Finally, let us derive (27). In this case 8¢ and vy, are known and A(4) does not depend
on X, and Corollary 3 gives

hE/IMSE 2(6”)EA|y,X[]EfX (A—-6)— Eyy;thMMSE].
Hence, denoting Iy yh(y, x) = h(y, x) the identity operator, we have

_ -1
hIEVIMSE :[(en) I]Iy,)( + E.AD},X o EJ/,XIA] EAW,XEfX(A —9).

(27) then follows from

_ 1 -1
[(en) I]Iy,)( +Eqy,x0 EvaA] Egpy,x = EAI);,X[EMXIA oE gy x + (en) I]IA]

S3. COMPUTATION IN SEMIPARAMETRIC MIXTURE MODELS

Here, we describe how we compute a numerical approximation to the minimum-MSE
estimator in semiparametric mixture models

1< =
M ) b2
SMMSE _ Ej. n5)A5(A4) + - hMMSE(y; B, 9),
i=1

where #MMSE is given by Corollary 2, and B, 7 are preliminary estimates. As we pointed

out in Section 3, AMMSE jg the solution to a (well-posed) Tikhonov-regularized linear in-
verse problem, and many numerical methods are available to solve such problems; see
Engl et al. (2000) and Kress (2014) for classic references. The simulation-based approach
that we have implemented and describe here is closely related to the strategy presented
in Bonhomme (2012). We abstract from conditioning covariates. In the presence of cor-
related covariates X;, we use the same technique to approximate #/MMSE(.|x) for each
value of X; = x. We use this approach in the numerical illustration based on the dy-
namic panel data model in Section 6, where the covariate is the initial condition. We
denote n = (B8, y')'.5°

S5Here, we present a general method based on simulations. In the cross-sectional probit model (30),
explicit closed-form expressions are available, and we use those for computation in our first illustration.
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Draw an i.i.d. sample (Y, AD), ..., (Y®S), A8)) of S draws from gg x 7(7y). Let G
be S x § with (r, 5) element gg(Y ™ |A4®))/ 35_; gg(YD]AE)), Gy be N x S with (i, s)
element gl.;.»(Y,-|A(s))/Zf,:1 gB(Yi|A(S/)), A be S x 1 with sth element Ag(A®)), I be the
S x S identity matrix, and ¢« and ¢y be the S x 1 and N x 1 vectors of ones. In addition,
let D be the S x dim  matrix with (s, k) element

S
Y (Vi loggp(Y91AYY) + ¥y, log m(v) (A7) g (Y[ A))
=1
dle (Y(S)) = . S »
Zgﬁ(y(S)lA(S’))
s'=1

and let Dy be N x dimn with (i, k) element d,,, (Y;), Q = I — DD', Gy = Gy — DyD'G,
Ty = vy — DyD"™., G = QG, T = Qu, and JA be the K x 1 vector with kth element
138 Vi AAY, B) + A(AY), BV, log m(y)(AD).

From Corollary 2, a fixed-S approximation to the minimum-MSE estimator is then

BMMSE _ [ TA 4} FMMSE,

where
IMMSE — Dy (D'D/S) ' 9A + (en)[(Gy — Ty )A
—GyG' (GG + (en) 1) ((en)"'D(D'D/S) "'A + (G —1.1)4)],

and (B, y) are replaced by the preliminary (3, 7) in all the quantities above, including
when producing the simulated draws. ¥MSE is consistent for SMMSE as § tends to infin-
ity for fixed », under suitable regularity conditions (see Bonhomme (2012) for a closely
related setup). Note that matrix inverses remain well-defined as S tends to infinity, due

to the presence of the Tikhonov-penalization term (en) 1.

Confidence intervals From Section 2.4, computing confidence intervals only requires,
in addition to computing critical values under correct specification, to compute an esti-
mate of the bias of the estimator b, (4, ,[?, %). In semiparametric mixture models, we have
for an asymptotically linear estimator based on # satisfying (2) and (4),

D=

be(h, Bo, v+) = €2 {Vargy, z(y.,)[Ape (A) = Egy,my,) (R(Y)]A)]}2.

SMMSE

A numerical approximation to the bias of 6; is then

EE (hleleSE, ,80, 'y*) = e% ||A _ LTA _ G/ZIEVIMSE“ )

Values of e In turn, € in (29) can be approximated as u(a, p)?/(nAy), where A is the
kth largest eigenvalue of G'QG = G’G (removing the eigenvalue equal to one since it
corresponds to a constant eigenfunction).



Supplementary Material Minimizing sensitivity to model misspecification 19

S4. MODELS DEFINED BY MOMENT RESTRICTIONS

In this section, we consider settings where a finite-dimensional parameter (3;,, )’ does
not fully determine the distribution fy of Y, but satisfies a finite-dimensional system of
moment conditions

]EfO‘P(Y) BOy 770) == 0; (818)

which may be just-identified, overidentified or underidentified. We focus on asymptot-
ically linear generalized method-of-moments (GMM) estimators of g, -, that satisfy

~ 1< 1 1
8 = 06py,m(y,) T a(Bo, 7*)/; Z‘I’(Yi, Bo, m(v+)) + op, (€2 + n~2), (S19)
i=1

for a parameter vector a(By, y«). We will characterize the form of a(By, v«) leading to
minimum worst-case MSE in ¢ (7y,).

We assume that the remainder in (S19) is uniformly bounded similarly as in (14). In
this case, local robustness with respect to (8;, v,)’ takes the form

V,B’ysﬁo,ﬂ(y*) + Efovﬁyq,(y’ ,80) 77(')/*))(1([30) 7*) =0. (520)

It is natural to focus on asymptotically linear GMM estimators here, since fy is unre-
stricted except for the moment condition (S18).
To derive the worst-case bias of § note that, by (518), for any m € I'c(y.) we have

Eq, (Y, Bo, m(ys)) = —[Ef, V¥ (Y, Bo, m(1:))] (0 — m(1:)) + 0(e?),

so, under appropriate regularity conditions,

o~ 1
sup |]Ef08 - 8B0,wo| =e€? ” V’ITSB(),W(’}/*) +Efovﬂq,(y! ﬁO’ 77(')’*))“(,30; '}’*)”y*
o€l (74)

+ o(e% + n_%).
The worst-case MSE of

~ 1<
8%,30,7* = 830%’(7*) + a(Bo, '}’*)/; Z\I’(Yir Bo, 77(')’*))
i=1

is thus
E” V’ITSB()JT(’}/*) +Ef0V7T\I,(Y’ Bo, 77(')’*))“(,80) '}’*)Hi{

E, (Y, Bo, 7(v:))¥ (Y, Bo, 7(vs))
n

+a(Bo, v+)' a(Bo, v+) +o(e+nt).

To obtain an explicit expression for the minimum-MSE estimator, let us focus on the
case where m is finite-dimensional and || - ||,, = || - [lo-1. Let us define

Vo, n(v) =Ef¥(Y, Bo, m(v:)) (Y, Bo, 77(7*))/, Kgy, miy) =Ef Va¥(Y, Bo, m(¥4)),
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and

Kpo,y. =Ef, Vpy U (Y, Bo, m(v4))-

For all By, v« we aim to minimize

2 VBo,m(y)
€[ V8o, 70y + Ko, m(3)a(Bo, v4) | g1 + a(Bo, v:)’ Bo;ry a(Bo. v+),
subject to Vg, 83, 7(y.) + Kpo,7.@(Bo, ¥+) = 0.

A solution is given by>®

MMSE _ T 4 T / -1
ae (Bo, v«) = _BBo,w(y*),eKﬁoﬁ* (KBO,'Y*Bﬁo,w('y*),eKBO,’y*) VBydpo, (v.)

i ’ i ’ -1 T
N BBom(V*),e(l — Koo, y. (KBO'V*BBO,W(V*),EKBO,W) KBO’V*B,BOrW(Y*),f)
-1
x Kko,w(v*)ﬂ Vb, m(v.) (S21)

where Bgy, n(y,),e = Kpg) (4,2 Kpo,m(v) + (€n) 7 Vg, m(y,), and Bgom(y*)’e is its Moore-
Penrose generalized inverse. Note that, in the likelihood case and taking ¥ (y, B8, m) =
Valog fg,=(y), the function h(y, Bo, y+) = aMMSE(Bo, v.) ¥ (y, Bo, m(y:)) simplifies to
(20).

As a special case, when € = 0 we have

MMSE _ i i -1
4o (Bo, v+) = _VBOJW(’Y*)KbO,'}’* (KBO’V*VBO;W(Y*)K/BOvY*) VBydp, m(y.)-

In this case, given preliminary estimators E and v, the minimum-MSE estimator

R PO &~
815\/IMSE = 8”;7(?) + al(;/IMSE(B’ 7)/; § \P(Yi’ B’ 7T(’}/))
=1

is the one-step approximation to the optimal GMM estimator based on the reference
model. To obtain a feasible estimator, one simply replaces the expectations in Vg, 7(,,)
and Kg, ,, by sample analogs.

As a second special case, consider e tending to infinity. Focusing on the known-

(Bo, v+) case for simplicity, aIEVIMSE(Bo, v,) tends to —K%?ZTW*)VWSBO,MY*), where
ginv
Bo,7(v«)
= (Vgo,w(y*))l/z[(Vgo,w(y*J)l/szo,w(y*)Q_lKBw(m(Vgo,w(y*))l/Z]T
< Vi) Ky iy @
Wre,we assume that Kg, -, Vg[w( MK;;O, y, I8 nonsingular, requiring that Bo, y. be identified from

the moment conditions. Existence follows from the fact that, by the generalized information iden-
tity, Vo, m(y,)@ = 0 implies that Kg,, (,.)a = 0. Moreover, although a™MSE(g,, y,) may not be unique,
aMMSE (g, . YW (Y, Bo, m(7y4)) is unique almost surely.
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is a generalized inverse of Kg ~(,,), and the choice of ) corresponds to choosing one
specific such generalized inverse. In this case, the minimum-MSE estimator is the one-
step approximation to a particular GMM estimator based on the “large” model.

Lastly, given a parameter vector a, confidence intervals can be constructed as ex-
plained in Section 2.4, taking

be(a) Er f)7) = 6%

1 ¢ ~
Vadpa + - D V¥ (Y B, m(M)a(B, 1)
i=1

Qfl

ExampLE. Consider again the OLS/IV example of Section 3.3, but now drop the Gaus-
sian assumptions on the distributions. For known C, the set of moment conditions cor-
responds to the moment functions

x(y—x'B—7'(x— Cz)))

Yy, x,z, B, 77):( 2(y — x'B)

In this case, letting W = (X', Z’)’ we have

xXx Xz
Kpoy. = —Ef(XW'),  Kpymi =—Ej, ((X —cox o ) '

and
2 /
Veo,ntv) =Ef, (Y = X' Bo) WW').

Given a preliminary estimator §, Vg, =(,.) can be estimated as IS (Yi— X! R/
whereas Kg, ,, and Kg; »(y,) can be estimated as sample means. The estimator based
on (S21) then interpolates nonlinearly between the OLS and IV estimators, similarly as
in the likelihood case.

S5. NUMERICAL ILLUSTRATIONS
S5.1 Interpretation of € in the cross-sectional binary choice model

Here, we use the binary choice model of Section 6.1 to provide additional intuition about
the interpretation of € based on statistical testing.

Let U; denote the span of the first k nonconstant eigenfunctions of the operator
ﬁﬁ. By construction, any density mg ¢ I'¢, (v«) such that (7o — 7(yx))/7(v«) € Uy can be
“detected” easily, in the sense that the local power of a 5%-likelihood ratio test exceeds
80%.57 In the upper panel of Figure S1, we plot the eigenfunctions in I . Plotting those
allows one to visualize the directions along which setting € to either of the €;’s provides
power guarantees outside the neighborhood. We see that the eigenfunctions do not vary
outside the [—1, 1] interval, where the support of X’ By lies. Within the [—1, 1] interval,
the eigenfunctions oscillate and belong to orthogonal bases of functions.

574, consists of cotangent elements that have zero mean under the reference model. Any such u € 7 can
be mapped to a direction v =u - 7(yx) € T in the tangent space.



22 Bonhomme and Weidner Supplementary Material

A. Eigenfunctions
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FIGURE S1. Eigenfunctions of H, in the cross-sectional binary choice model. Notes: In the top

panel, we report the first 2 (resp., first 3) nonconstant eigenfunctions of H,. The first eigenfunc-

tion is shown in dashed, the second one in dashed-dotted, and the third one in dotted. In the

bottom panel, we plot the true and reference densities in solid, as well as the successive approx-

imations using the first, the first two, or the first three eigenfunctions.

To see how well the true 7y can be approximated using the directions in U, in the
bottom panel of Figure S1, we report the projection of 7y onto U. We see that, outside
the [—1, 1] interval, the projection is only governed by the reference normal density, re-
flecting the limited support of X. Within the interval, the approximation to the true bi-
modal density improves as k increases. At the same time, note that, consistently with

our local approach, the approximating functions are not necessarily nonnegative.58

$81n addition, since we know m in this exercise, we can compute the local power of a 5%-likelihood ratio
test in direction 7y — 7 (7y,), for any value of e. We find a power of 0.51 at €; and 0.71 at e when X has 4
points of support, and 0.67 at €1, 0.92 at €2, and 0.99 at e3 when X has 20 points of support.
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S5.2 Additional tables

TABLE S1. Monte Carlo simulation of the average effect in the cross-sectional binary choice
model, interpolation (xo = (0.5, 1)').

Minimum-MSE, for € = 0.0001 0.20 0.40 0.60 0.80 1.00
Any=4
Worst-case bias 0.0021 0.0783 0.1104 0.1351 0.1560 0.1744
Asymptotic standard error 0.0228 0.0288 0.0297 0.0300 0.0302 0.0303
Monte Carlo bias 0.1026 0.0197 0.0134 0.0111 0.0099 0.0092
Monte Carlo standard deviation 0.0253 0.0281 0.0288 0.0291 0.0292 0.0293
Monte Carlo root MSE 0.1057 0.0343 0.0317 0.0311 0.0308 0.0307
CI length 0.0936 0.2697 0.3372 0.3878 0.4302 0.4674
CI coverage 0.0180 0.9990 1.0000 1.0000 1.0000 1.0000
B.ny =20
Worst-case bias 0.0021 0.0480 0.0610 0.0714 0.0805 0.0887
Asymptotic standard error 0.0227 0.0394 0.0453 0.0487 0.0509 0.0526
Monte Carlo bias 0.0976 0.0080 0.0037 0.0026 0.0022 0.0020
Monte Carlo standard deviation 0.0239 0.0386 0.0446 0.0480 0.0502 0.0519
Monte Carlo root MSE 0.1005 0.0394 0.0447 0.0480 0.0502 0.0519
CI length 0.0931 0.2503 0.2996 0.3337 0.3607 0.3835
CI coverage 0.0190 0.9990 1.0000 1.0000 1.0000 1.0000

Note: Performance of the minimum-MSE estimator in the cross-sectional binary choice model, for different values of e.
n = 500, results for 1000 simulations. The nominal level for confidence intervals (CI) is 95%. ny denotes the number of points
of support of the first component of X.

TaBLE S2. Monte Carlo simulation of the average effect in the cross-sectional binary choice
model, extrapolation (xo = (—0.5, 1)").

Minimum-MSE, for e = 0.0001 0.20 0.40 0.60 0.80 1.00
A.ny =4
Worst-case bias 0.0029 0.1269 0.1794 0.2197 0.2537 0.2837
Asymptotic standard error 0.0296 0.0312 0.0315 0.0316 0.0316 0.0317
Monte Carlo bias -0.0987 -0.0903 -0.0901 -0.0900 -0.0900 -0.0900
Monte Carlo standard deviation 0.0283 0.0330 0.0334 0.0335 0.0336 0.0336
Monte Carlo root MSE 0.1027 0.0961 0.0961 0.0961 0.0961 0.0961
Cllength 0.1219 0.3762 0.4822 0.5632 0.6314 0.6914
CI coverage 0.2000 0.9370 0.9850 0.9960 0.9990 1.0000
B. ny = 20
Worst-case bias 0.0028 0.1172 0.1645 0.2008 0.2314 0.2584
Asymptotic standard error 0.0313 0.0401 0.0443 0.0470 0.0489 0.0503
Monte Carlo bias -0.0902 -0.0961 -0.0988 -0.0999 -0.1005 -0.1009
Monte Carlo standard deviation 0.0287 0.0373 0.0412 0.0437 0.0456 0.0471
Monte Carlo root MSE 0.0947 0.1031 0.1070 0.1090 0.1104 0.1113
Cl length 0.1284 0.3915 0.5026 0.5857 0.6544 0.7141
CI coverage 0.2530 0.9500 0.9910 0.9960 0.9970 0.9970

Note: See the notes to Table S1.
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TaBLE S3. Monte Carlo simulation results for the autoregressive parameter in the dynamic bi-
nary choice panel data model.

Minimum-MSE, for € = m 0.20 0.40 0.60 0.80 1.00
A. T=5
Worst-case bias 0.0001 0.0179 0.0227 0.0266 0.0299 0.0327
Asymptotic standard error 0.0952 0.0975 0.0979 0.0981 0.0983 0.0985
Monte Carlo bias —0.1729 —0.0615 —0.0555 —0.0531 —0.0518 —0.0509
Monte Carlo standard deviation 0.1252 0.1111 0.1129 0.1136 0.1141 0.1145
Monte Carlo root MSE 0.2135 0.1270 0.1258 0.1255 0.1254 0.1253
CI length 0.3734 0.4179 0.4292 0.4379 0.4452 0.4516
CI coverage 0.5470 0.8890 0.9080 0.9160 0.9220 0.9280
B.T=10
Worst-case bias 0.0001 0.0090 0.0118 0.0140 0.0158 0.0175
Asymptotic standard error 0.0607 0.0614 0.0615 0.0616 0.0616 0.0617
Monte Carlo bias —0.0780 —0.0137 —0.0120 -0.0114 —0.0110 —0.0107
Monte Carlo standard deviation 0.0676 0.0731 0.0736 0.0738 0.0739 0.0740
Monte Carlo root MSE 0.1032 0.0744 0.0745 0.0746 0.0747 0.0748
CI length 0.2381 0.2587 0.2647 0.2694 0.2733 0.2768
CI coverage 0.7130 0.9210 0.9330 0.9360 0.9360 0.9380
C.T=20
Worst-case bias 0.0001 0.0058 0.0078 0.0093 0.0106 0.0118
Asymptotic standard error 0.0418 0.0421 0.0422 0.0422 0.0422 0.0422
Monte Carlo bias —0.0304 —0.0023 —0.0019 —0.0017 —0.0017 —0.0016
Monte Carlo standard deviation 0.0442 0.0488 0.0490 0.0490 0.0491 0.0491
Monte Carlo root MSE 0.0537 0.0488 0.0490 0.0491 0.0491 0.0491
CI length 0.1638 0.1766 0.1808 0.1840 0.1867 0.1891
CI coverage 0.8780 0.9110 0.9180 0.9230 0.9260 0.9300

Note: Performance of the minimum-MSE estimator of By in the dynamic panel data binary choice model, for different
values of e. n =500, results for 1000 simulations. The nominal level for confidence intervals (CI) is 95%.
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TaBLE S4. Monte Carlo simulation results for the average state dependence parameter in the
dynamic binary choice panel data model.

Minimum-MSE, for € = 0.00 0.20 0.40 0.60 0.80 1.00
A.T=5
Worst-case bias 0.0000 0.0099 0.0134 0.0162 0.0185 0.0205
Asymptotic standard error 0.0259 0.0268 0.0270 0.0272 0.0273 0.0274
Monte Carlo bias —0.0538 —0.0218 —0.0202 —0.0196 —0.0193 —0.0191
Monte Carlo standard deviation 0.0439 0.0324 0.0331 0.0334 0.0336 0.0337
Monte Carlo root MSE 0.0694 0.0391 0.0387 0.0387 0.0387 0.0388
Cl length 0.1017 0.1250 0.1329 0.1389 0.1439 0.1483
CI coverage 0.4450 0.8620 0.8850 0.9000 0.9190 0.9240
B.T=10
Worst-case bias 0.0000 0.0121 0.0169 0.0207 0.0238 0.0266
Asymptotic standard error 0.0181 0.0184 0.0185 0.0186 0.0186 0.0187
Monte Carlo bias —0.0212 —0.0047 —0.0048 —0.0050 —0.0051 —0.0052
Monte Carlo standard deviation 0.0257 0.0229 0.0230 0.0231 0.0231 0.0232
Monte Carlo root MSE 0.0333 0.0233 0.0235 0.0236 0.0237 0.0238
CI length 0.0710 0.0963 0.1063 0.1141 0.1206 0.1263
CI coverage 0.6610 0.9630 0.9780 0.9830 0.9870 0.9880
C.T=20
Worst-case bias 0.0000 0.0163 0.0230 0.0281 0.0325 0.0363
Asymptotic standard error 0.0134 0.0135 0.0136 0.0137 0.0137 0.0138
Monte Carlo bias —0.0097 —0.0028 —0.0028 —0.0028 —0.0028 —0.0028
Monte Carlo standard deviation 0.0187 0.0153 0.0153 0.0154 0.0154 0.0155
Monte Carlo root MSE 0.0210 0.0155 0.0156 0.0156 0.0157 0.0157
CI length 0.0525 0.0857 0.0993 0.1098 0.1187 0.1265
CI coverage 0.7840 0.9890 0.9930 0.9960 0.9970 0.9970

Note: Performance of the minimum-MSE estimator of 85 r, in the dynamic panel data binary choice model, for different
values of e. n =500, results for 1000 simulations. The nominal level for confidence intervals (CI) is 95%.
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