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Compared to the distributions of earnings, the distributions of wealth in the US
and many other countries are strikingly concentrated on the top and skewed to
the right. To explain the income and wealth inequality, we provide a tractable
heterogeneous-agent model with incomplete markets in continuous time. We
separate illiquid capital assets from liquid bond assets and introduce jump risks
to capital income, which are crucial for generating a thicker tail of the wealth dis-
tribution than that of the labor income distribution. Under recursive utility, we
derive optimal consumption and wealth in closed form and show that the sta-
tionary wealth distribution has an exponential right tail that closely approximates
a power-law distribution. Our calibrated model can match the income and wealth
distributions in the US data including the extreme right tail of the wealth distribu-
tion.
Keywords. Wealth distribution, inequality, heterogeneous agents, incomplete
markets, exponential tail.
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1. Introduction

The distributions of wealth in the US and many other countries are strikingly concen-
trated on the top and skewed to the right (e.g., Piketty, Saez, and Zucman (2018), Bricker,
Henriques, Krimmel, and Sabelhaus (2016), and Smith, Zidar, and Zwick (2021)). For ex-
ample, using the US administrative tax data, Smith, Zidar, and Zwick (2021) estimate
that the top 0.1% and 1% wealth shares increased from 9.9% and 23.9% in 1989 to 15%
and 31.5% in 2016, respectively. Understanding the sources of the wealth inequality and
the mechanism that generates such inequality is important not only for policy makers,
but also for academic researchers.
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In this paper, we provide a tractable general-equilibrium model that accounts for
the US distributions of earnings and wealth since 2000, focusing on how sudden new
fortunes generated from investments affect the macroeconomy and the wealth distri-
bution. There is ample evidence of sudden new fortunes. For example, by examining
100 of the richest Americans listed in the Forbes magazine, Graham (2021) argues that
“[b]y 2020 the biggest source of new wealth was what are sometimes called ‘tech’ com-
panies. Of the 73 new fortunes, about 30 derive from such companies. These are partic-
ularly common among the richest of the rich: 8 of the top 10 fortunes in 2020 were new
fortunes of this type.” Halvorsen, Hubmer, Ozkan, and Salgado (2023) examine the Nor-
wegian administrative data and find that at least a quarter of the wealthiest (top 0.1%)
people start with debt but experience rapid wealth growth early in life as there were
some sudden large new fortunes generated from private equity investments.

Our model builds on the standard quantitative theory used in the heterogeneous-
agent literature within macroeconomics: the Bewley–Huggett–Aiyagari (BHA) model
(Bewley (1980), Huggett (1993), and Aiyagari (1994)). As is well known (e.g., Benhabib
and Bisin (2018) and Stachurski and Toda (2019)), a standard BHA model with infinitely-
lived agents facing idiosyncratic labor income risks alone generates a counterfactual re-
sult that the tail thickness of the model output (wealth distribution) cannot exceed that
of the input (labor income distribution). The reason is that precautionary saving usu-
ally compresses the input distribution. By contrast, the capital income jump risks influ-
ence precautionary saving in a different way than labor income risks and, therefore, our
model can generate a thicker tailed wealth distribution than the labor income distribu-
tion.

We depart from the standard BHA model by introducing two key ingredients. First,
we introduce portfolio heterogeneity by separating illiquid capital assets from liquid
safe assets (bonds). In the standard BHA model, both types of assets are perfect sub-
stitutes and earn the same constant return (interest rate) in a stationary equilibrium. In
our model, capital assets are illiquid and incur maintenance costs (similar to, e.g., Ka-
plan and Violante (2014) and Kaplan, Moll, and Violante (2018)). Thus the rate of capital
return differs from the interest rate.

Second, we introduce idiosyncratic investment risks in the form of Poisson jumps of
capital income from entrepreneurial profits, but not to the rate of return on capital al-
ready in place. At each point in time, each household has a chance of investing in a risky
project or conducting innovations/R&D. Such activities arrive as rare events and may
generate large stochastic profits. These profits are critical to account for the top wealth
shares. This feature is consistent with the wealth accumulation of some richest Ameri-
cans in recent years as mentioned before. Another feature is that the wealth distribution
converges quickly since there are always some (albeit very few) people who experience
large capital income jumps.1

Incorporating the above two ingredients in a tractable continuous-time model, we
make a technical contribution by adopting the affine jump-diffusion (AJD) framework of

1In our simulations, the wealth distribution converges to a stationary distribution in less than 15 years
in the model.
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Duffie, Pan, and Singleton (2000) in the finance literature. Specifically, we assume that
labor income follows a square-root process (Cox, Ingersoll, and Ross (1985)) and each
household’s preferences are represented by continuous-time recursive utility of Duffie
and Epstein (1992). We embed the power-exponential specification of the discrete-time
recursive utility model of Weil (1993) into our continuous-time setup. This specification
features a constant elasticity of intertemporal substitution (EIS) and a constant coeffi-
cient of absolute risk aversion (CARA).

Abstracting away from binding borrowing constraints, we are able to derive a
closed-form solution to the individual consumption/saving problem under uninsur-
able Brownian labor income risk and Poisson capital income jump risk. Unlike the usual
exponential-affine models (e.g., Caballero (1990), Calvet (2001), Angeletos and Calvet
(2006), and Wang (2003, 2007)), our model setup delivers positive labor income and
positive individual consumption under some mild assumptions. The estimated labor
income process (with only three parameters) matches closely the distribution of income
growth obtained from the administrative panel data of Guvenen, Karahan, Ozkan, and
Song (2021). The separation between EIS and CARA in our utility model is important
not only for understanding precautionary saving (Weil (1993)), but also for generating
a large, realistic marginal propensity to consume (MPC) as in the data.2 This feature is
critical for the existence of a stationary equilibrium and also for matching the data.

We provide three major theoretical results. First, we prove the existence of a station-
ary equilibrium in which the interest rate is lower than the subjective discount rate as in
Aiyagari (1994). We show that the equilibrium prices and aggregate quantities can be de-
termined independently of the full wealth distribution because only the mean matters
for the aggregate variables. After the equilibrium prices are pinned down, our explicit
solution for the optimal consumption and wealth processes allows us to simulate the
wealth distribution tractably and efficiently.3

Second, we show that the joint equilibrium wealth and labor income process is an
AJD process. Extending the method of Wang (2007), we provide an explicit recursive for-
mula to compute the moments of the stationary wealth and labor income distributions.
Our explicit formula shows clearly how the capital income jump intensity and the jump
size distribution can generate a larger skewness and a larger kurtosis for the wealth dis-
tribution relative to the labor income distribution. Additionally, our analytical character-
ization does not rely on permanent earnings heterogeneity, which is crucial for deriving
analytical results in the literature (e.g., Cao and Luo (2017)), and as mentioned before
our earnings process can generate a cross-sectional earnings-growth distribution simi-
lar to the data.

Importantly, having additional capital income jump risks on top of labor earnings
risks does not guarantee an increase in wealth skewness or in wealth kurtosis. In fact, the

2See Kaplan and Violante (2024) for the impact of recursive utility on the MPC in the discrete-time BHA
framework.

3Because we have a closed-form solution for the wealth process, we do not need to use the PDE approach
of Achdou, Han, Lasry, Lions, and Moll (2022) to solve for the wealth distribution. As Gouin-Bonenfant and
Toda (2023) argue, the usual numerical methods may suffer from large truncation errors at the upper tail of
the wealth distribution.
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precautionary saving motives with jump risks in the BHA environment can even reduce
the skewness and the kurtosis of wealth. Our closed-form solution highlights that the
illiquidity of capital and higher-order moments of jump risks are critical to increase the
skewness and the kurtosis of the wealth distribution. The reason is that they can control
the degree of precautionary saving as a result of market incompleteness.

Third, we further provide a novel characterization of the wealth distribution and es-
pecially its tail behavior. We show that under our model specification and assumptions,
both the stationary wealth and labor income distributions can have a thin exponen-
tial tail with all its moments remaining finite if the jump size follows a hyperexponen-
tial distribution (HED), that is, a finite mixture of exponential distributions (Feldmann I
and Whitt (1998)). Moreover, we explicitly characterize their exponential decay rates. We
identify conditions on the HED such that the tail of the wealth distribution decays more
slowly than that of the labor income distribution so that the wealth distribution has a
heavier tail.

To examine the quantitative implications, we calibrate our model to confront the
US data. We choose parameter values to match the US micro and macro data, and es-
pecially statistics related to the wealth and earnings distributions. We adopt the HED
specification for the jump size of entrepreneurial capital income because it allows us
to get analytic solutions, to compute the stationary equilibrium tractably, and because
the HED delivers explicit formulas for the moment generating function and the Laplace
transform. Quantitatively, by specifying only two exponential components for the HED,
we find that our calibrated model can match the wealth distribution in the data closely.
In particular, we can match the wealth shares held by the top 0.1% and 1%, despite the
fact that the HED and its induced wealth distribution have thin tails because all of their
moments remain finite.

Unlike ours, many empirical papers that study the distribution of wealth find that
its right tail closely conforms to a power law or a Pareto distribution with a slowly de-
caying density (see, e.g., Vermeulen (2015) and De Vries and Toda (2021) for extensive
studies covering many countries).4 The recent theoretical literature has also shifted at-
tention to generating a Pareto wealth distribution with thick right tails. This literature
applies the Kesten process (Kesten (1973)) with random returns to wealth to give mi-
crofoundations to such process.5 We refer readers to Gabaix (2009) and Benhabib and
Bisin (2018) for surveys of this literature and additional references. So, at a first sight

4Vermeulen (2015) computes the tail index for non-response rates for the very rich combining the Forbes
400 list with the Survey of Consumer Finances. He obtains estimates of the Pareto tail index in the range of
1.48–1.55 for the US. Also, using the Forbes 400 for the period 1988–2003, Klass, Biham, Levy, Malcai, and
Solomon (2006) estimate a Pareto tail index for the US of 1.49. Clementi and Gallegati (2005) find thick tails
of wealth for Italy from 1977 to 2002. Dagsvik, Jia, Vatne, and Zhu (2013) use the power law distribution
to describe the distribution of wealth in Norway in 1998, while Vermeulen (2015) finds the same for several
European countries. Cowell (2011) also finds Pareto tail indices of 1.63–1.85 for wealth in Sweden, and 1.33–
1.54 in Canada; see also Jones (2015).

5See, for example, Benhabib, Bisin, and Zhu (2011, 2015, 2016, 2019), Gabaix, Lasry, Lions, and Moll
(2016), Nirei and Aoki (2016), Cao and Luo (2017), Jones and Kim (2018), Toda (2014, 2019), Sargent, Wang,
and Yang (2021), and Moll, Rachel, and Restrepo (2022). See Hubmer, Krusell, and Smith (2021) for a quan-
titative study.
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our results may seem quite surprising, while in fact they can be easily reconciled with
the empirical and theoretical results just cited. The reason is that it is very difficult to
distinguish empirically the exponential-type tails from power-type (Pareto) tails given a
finite sample of data. Heyde and Kou (2004) show that sample sizes typically in the tens
of thousands or even hundreds of thousands are necessary to distinguish power-type
tails from exponential-type tails. Moreover, the HED can closely approximate any com-
pletely monotone distribution including the Pareto distribution (see Feldmann I and
Whitt (1998)).6 Given finite wealth distribution data, our results are compatible with
Pareto distributed wealth, and can be empirically well approximated either with an ap-
propriate power law distribution, or with a thin tailed wealth distribution that is gen-
erated by an appropriate thin tailed HED for the jump size of entrepreneurial capital
income.

Related literature Our paper contributes to the macroeconomics literature on wealth
inequality in the tradition of the BHA model.7 Examples include the warm-glow be-
quest and human capital motives of De Nardi (2004), which can make rich agents save at
higher rates, very large earnings risk for high-earnings households of Castaneda, Diaz-
Gimenez, and Rios-Rull (2003), random subjective discount rates of Krusell and Smith
(1998), or random idiosyncratic returns to wealth. Our paper is also closely related to
the work on the importance of entrepreneurship of Quadrini (2000) and Cagetti and De
Nardi (2006).

In an important paper, Stachurski and Toda (2019) prove that if (i) agents are
infinitely-lived, (ii) saving is risk-free, and (iii) agents have constant discount factors,
then the wealth distribution inherits the tail behavior of income shocks (e.g., light-
tailedness or the Pareto exponent). Their results show conclusively that it is necessary
to go beyond standard BHA models to explain the empirical fact that wealth is heavier-
tailed than income (see Benhabib and Bisin (2018) for related results).

Our modeling of capital income jumps is similar to that of a rare event of jump-
ing from low earnings to very high earnings in Castaneda, Diaz-Gimenez, and Rios-Rull
(2003). Besides many other differences, Castaneda, Diaz-Gimenez, and Rios-Rull (2003)
assume that both liquid bond assets and illiquid capital assets earn the same rate of re-
turn, while we explicitly distinguish between these two types of assets and assume that
jumps happen to the capital income only, but not the labor income. Moreover, the jump
intensity is endogenous in our model, while it is exogenous in their model.

Our modeling of investment risks builds on the early work of Quadrini (2000) on
stochastic arrivals of entrepreneurial profit opportunities to a random subset of house-
holds each period, as well as the work of Cagetti and De Nardi (2006), Angeletos and
Calvet (2006), Angeletos (2007), and Angeletos and Panousi (2011). In addition to some
technical details, our model differs from these papers in three features: (i) We introduce
capital income jump risks (instead of Brownian risks) in addition to labor income risks;

6A distribution with the PDF g(x) is completely monotone if the nth derivative g(n)(x) exists and
(−1)ng(n)(x) ≥ 0 for any n≥ 1.

7See Heathcote, Storesletten, and Violante (2009), Guvenen (2011), Quadrini and Ríos-Rull (2015),
Krueger, Mitman, and Perri (2016), and Benhabib and Bisin (2018) for recent surveys.
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(ii) We adopt the recursive utility specification of Weil (1993) in a continuous-time setup,
which ensures consumption is always positive under mild conditions. To the best of
our knowledge, our paper is the first one to embed the Weil’s discrete-time model in
a continuous-time setup; (iii) Our model generates a nondegenerate wealth distribution
as in the data, matching the top wealth shares up to the 0.1%.

Our model is also related to Wang (2007), who adopts recursive utility with a
consumption-dependent rate of time preference (Uzawa (1968)) and a jump-diffusion
labor income process in an endowment economy. Such a specification in an
exponential-affine framework allows him to derive a closed-form solution to the in-
dividual consumption/saving problem and a moment characterization of the wealth
distribution. His model implies counterfactually that wealth is less skewed and is lighter
tailed than income. By contrast, our recursive utility specification and the new ingredi-
ent of capital income jumps allow us to generate realistic MPC and realistic income and
wealth distributions as in the data.

2. Model

Consider an infinite-horizon continuous-time model in which there is a continuum of
infinitely-lived households, indexed by i and distributed uniformly over [0, 1]. At each
time t ≥ 0, each household is endowed with one unit of labor. It owns and runs a private
firm, which employs efficiency labor units supplied by other households in the compet-
itive labor market but can only use the capital stock invested by the particular house-
hold. Each household faces two independent sources of idiosyncratic shocks that hit its
private firm and its earnings. It can only trade riskless bonds and cannot fully diversify
away idiosyncratic shocks. We assume that there is no aggregate uncertainty so that all
aggregate variables are deterministic by a law of large numbers. We focus on a station-
ary economy in which all aggregate (per capita) quantities and prices (wage and interest
rate) are constant over time.

2.1 Preferences

All households have the same recursive utility over consumption in continuous time
(Duffie and Epstein (1992)). It helps intuition much better by motivating such utility as
the limit of a discrete-time model (Epstein and Zin (1989)) as the time interval shrinks
to zero.8

For simplicity, we omit the household-specific index i for now. Let dt denote the
time increment. The continuation utilityUt at time t over a consumption process {ct }t≥0

satisfies the following recursion:

Ut = f−1[f (ct )dt + exp(−βdt )f (Rt(Ut+dt )
)]

,

8See Caldara, Fernadez-Villaverde, Rubio-Ramrez, and Yao (2012) for a comparison of different solution
methods for computing the dynamic stochastic general equilibrium models with recursive preferences in
discrete time.
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where β > 0 denotes the rate of time preference, f denotes a strictly increasing time
aggregator function, and Rt denotes a conditional certainty equivalent. Notice that Ut
is ordinally equivalent to f (Ut ). We adopt the specification of Weil (1993):

f (c) = c1−1/ψ

1 − 1/ψ
, Rt(Ut+dt ) = u−1

Etu(Ut+dt ), u(Ut+dt ) = −exp(−γUt+dt )
γ

, (1)

where γ > 0 is the coefficient of absolute risk aversion and ψ > 0 (ψ �= 1) is the EIS pa-
rameter. In Appendix B, we derive the continuous-time limit forUt as dt → 0 in the pres-
ence of both jump and diffusion risks. Such a construction ensures dynamic consistency
of the continuation utility. By varying the consumption process {ct }t≥0, we obtain the
utility function U({ct }t≥0 ) =U0.

The specification of f in (1) implies that consumption can never be negative. More-
over, the CARA specification of u allows the consumption/saving problem with addi-
tive labor income risk to admit a closed-form solution (Weil (1993)). Angeletos and
Calvet (2006) also consider CARA specification for u, but they assume that f (c) =
−ψexp(−c/ψ) is an exponential function. This specification implies that optimal con-
sumption can be negative and cannot generate a stationary wealth distribution. To en-
sure the existence of a stationary wealth distribution, Wang (2007) adopts recursive util-
ity with CARA specification for u = f and with a consumption-dependent rate of time
preference (Uzawa (1968)).9 But his model still generates negative consumption.

2.2 Decision problem

In this subsection, we study a household’s decision problem holding the interest rate
and the wage rate constant over time. The government imposes a tax rate τk on the cap-
ital income and a tax rate τ� on the labor income. Let the production function take the
form

yt =Akαt l1−α
t , α ∈ (0, 1),A> 0,

where A, yt , kt , and lt denote aggregate productivity, output, capital, and labor, respec-
tively. Profit maximization implies

Rkkt = (1 − τk ) max
lt

{
Akαt l

1−α
t − wlt

1 − τ� − δkt
}

= (1 − τk )

[
αA

(
(1 − α)A
w/(1 − τ� )

) 1−α
α − δ

]
kt , (2)

wherew andRk denote the after-tax wage rate and capital return, and δ > 0 denotes the
depreciation rate.

9Another way to generate a stationary wealth distribution is to adopt the overlapping-generations (OLG)
framework of Blanchard (1985) with death probability independent of age, or with “perpetual youth.” As
pointed out in Benhabib and Bisin (2018), an implication of the perpetual youth assumption is that the
right Pareto tail becomes populated with agents that are unrealistically old for calibrations to match the
right tail of the wealth distribution.
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The household faces idiosyncratic investment risk and labor income (earnings) risk.
The effective market labor efficiency units are represented by the process (�t ), which is
governed by the dynamics

d�t = ρ�(L− �t )dt + σ�
√
�t dW

�
t , (3)

whereW �
t is a standard Brownian motion and σ�, ρ� > 0. This is the square-root process

modeled in Cox, Ingersoll, and Ross (1985). One can interpret �t as the product of labor
hours and idiosyncratic labor productivity. To ensure �t is strictly positive for theoretical
proofs, we assume that 2ρ�L ≥ σ2

� . The process has a time-varying volatility and the
long-run mean of �t is equal to the aggregate labor supply L.10

To model the investment risk, suppose that the capital income from entrepreneurial
profits is hit by a jump shock dJt , where Jt is a jump process. Notice that this income
generates another form of output from business risk-taking. For each realized jump, the
random jump size q is drawn from a fixed probability distribution ν over [0, ∞). Assume
that all shocks are independent of each other and across households. For notation sim-
plicity, q already takes into account the tax rate τk; the before-tax jump size is q/(1 −τk ).

We assume that the intensity at which a jump occurs depends upon kt and is given
by λt = λkkt , where λk > 0. Intuitively, during any time interval [t, t + dt], the house-
hold receives an average capital income λkktEν[q]dt. The interpretation is that there is
a rare event that the new investment earns a large return and the success probability is
positively related to invested capital. Such a return represents additional output from
entrepreneurial risk-taking activities like initiating new projects, innovations, or R&D.11

It is related to the early seminal work of Quadrini (2000), which introduces entrepreneur-
ship through stochastically arising profitable investment opportunities for households
in a “noncorporate sector” subject to borrowing constraints, and to the work of Cagetti
and De Nardi (2006) that also incorporates entrepreneurial entry, exit, and investment
decisions in the presence of borrowing constraints in an OLG framework of perpetual
youth as in Blanchard (1985). In our model, investment returns are additive to labor
earnings, and may be viewed as high entrepreneurial earnings in excess of labor earn-
ings. This is very similar to the awesome states or rare events in which individual labor
productivity can become extremely high, as in Castaneda, Diaz-Gimenez, and Rios-Rull
(2003)). The key difference is that in our model the large and rare income comes from
entrepreneurial investment only, instead of labor income, and capital earns a higher
expected rate of return than the interest rate on bonds. Moreover, the jump intensity
λt = λkkt is endogenous in our model, while it is exogenously fixed in their model.

Capital assets are illiquid and owning kt of them incurs maintenance costs ηk2
t /2 +

χkt per unit of time, where η > 0 and χ > 0 are parameters. The household can trade

10The discretized version of (3) is �t+dt − �t = ρ�(L− �t )dt+σ
√
�t dtεt+dt , where dt is the time increment

and εt+dt is an independent standard normal random variable. This is a type of the ARCH model in that the
variance of �t+dt conditional on �t is σ2�t dt. Related models are used to estimate earnings dynamics in the
literature, for example, Arellano, Bonhomme, De Vera, Hospido, and Wei (2022).

11One may assume that the intensity contains a constant component in that λt = λ0 + λkkt for λ0 > 0.
In this case, there is always a chance that the household receives additional output without making any
investment.
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riskless bonds at the after-tax interest rate r to insure against idiosyncratic shocks. Let
bt be the household’s holding of private and public bonds. Households can borrow and
lend among themselves without any trading frictions so that bt < 0 represents borrow-
ing. To deliver a closed-form solution, we do not impose binding borrowing constraints,
but a transversality condition on the value function must be satisfied to rule out Ponzi
schemes (e.g., Merton (1971)).

The entrepreneurial profits (capital income) πt follow dynamics

dπt =Rkkt dt −
(
χkt + η

2
k2
t

)
dt + dJt .

By contrast, the continuous-time literature on investment risks (e.g., Angeletos and
Panousi (2011)) typically focuses on Brownian shocks and replaces dJt with σkkt dBkt ,
where Bkt is another Brownian motion. Let xt = bt + kt denote the household’s wealth
level. Then the household faces the following dynamic budget constraint:

dxt = rbt dt + dπt +w�t dt − ct dt +ϒdt,
where ϒ represents per capita government transfers (or lump-sum taxes if ϒ< 0). Com-
bining the above two equations yields the wealth dynamics:

dxt = rxt dt +
(
Rk −χ− r)kt dt − η

2
k2
t dt + dJt +w�t dt − ct dt +ϒdt. (4)

The household problem is to choose consumption and capital investment processes
(ct , kt )t≥0 to maximize utility U({ct }t≥0 ) subject to the budget constraints (4), given ini-
tial wealth x0 = x and labor �0 = �. Let V (x, �) denote the value function. In Appendix A,
we use dynamic programming to derive the following result.

Proposition 1. Suppose that 0 < r < β and that Eν[exp(−αq)] and Eν[q] are finite for
any α> 0. Then the optimal consumption rule is given by

ct = θ1−ψ(xt + ξ��t + ξ0 ), (5)

the capital demand is given by

kt = k≡ 1
η

[
Rk −χ+ λkEν

[
1 − exp(−γθq)

]
γθ

− r
]

, (6)

and the value function takes the form V (xt , �t ) = θ(xt +ξ��t +ξ0 ), where θ, ξ�, and ξ0 are
given by

θ= [
ψ(β− r ) + r] 1

1−ψ , (7)

ξ� =
−(ρ� + r ) +

√
(ρ� + r )2 + 2σ2

� θγw

θγσ2
�

> 0, (8)

ξ0 = 1
r

{(
Rk −χ− r)k− η

2
k2 + λkk

γθ
Eν

[
1 − exp(−γθq)

]+ϒ+ ξ�ρ�L
}

. (9)
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Equation (6) describes the optimal capital rule similar to that in the portfolio choice
literature (Merton (1971)) and can be rewritten as

Rk + λkEν[q] − r = (ηk+χ) + λk
[
Eν[q] − Eν

[
1 − exp(−γθq)

]
γθ

]
. (10)

The left side of this equation represents the (after-tax) expected return on capital invest-
ment in excess of the interest rate (i.e., equity premium). The expected return consists of
the usual return Rk from neoclassical production and the return λkEν[q] from business
risk-taking activities. The right side has two components. The first component ηk+ χ

represents the marginal capital maintenance cost, which reflects the liquidity premium.
The second component represents the risk premium due to the jump risk and increases
with the risk aversion parameter γ and the jump intensity λk. Notice that optimal capital
demand k is constant and independent of individual variables, and hence will be equal
to the aggregate capital stock in equilibrium.12

To understand the consumption rule in (5), we need to introduce the concept of
human wealth, which is defined as the (after-tax) expected present value of future la-
bor income. For our incomplete markets model with uninsured risk, there is no unique
stochastic discount factor used to discount future labor income. The literature typically
uses the interest rate r > 0 as the discount rate. Formally, we define human wealth as

ht ≡ Et

[∫ ∞

t
e−r(s−t )w�s ds

]
= w

r + ρ�
(
�t + ρ�L

r

)
. (11)

Then we can rewrite (5) as

ct =ϑ(xt + ahht + �), (12)

where we define

ϑ≡ψ(β− r ) + r > 0, (13)

ah ≡ (r + ρ� )ξ�
w

∈ (0, 1), (14)

�≡ ηk2

2r
+ ϒ

r
. (15)

The consumption rule in (12) is related to the permanent income theory of con-
sumption. It implies that optimal consumption is linear in human and nonhuman
wealth.13 This property is important for aggregation and useful to analyze the wealth

12One can obtain many different constant levels of capital investment by, for example, introducing dif-
ferent values of EIS ψ to various groups of households in the economy. Then rich households who hold
more capital will have even higher chances to generate capital income jumps, making the jumps even more
powerful in generating the wealth dispersion. We choose to be conservative by having only one single level
of capital, which also simplifies the numerical exercise later.

13See Hall (1978) for an early empirical test of the permanent income theory. See Weil (1993) for a further
discussion of the empirical implications of the consumption rule in (12). See Carroll and Kimball (1996) for
a discussion of theory and evidence against linearity of the consumption function.
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distribution and stationary equilibrium. The variableϑ represents the marginal propen-
sity to consume (MPC), which is important to understand the consumption behavior
and the wealth distribution. The assumption of 0 < r < β ensures that the MPC ϑ > 0
by equation (13), which also shows that the MPC increases with the EIS parameter ψ.
This assumption will be satisfied in general equilibrium. As is well known, the MPC is
equal to r in the standard time-additive CARA utility model (e.g., Caballero (1990) and
Wang (2007)) without binding borrowing constraints. Importantly, recursive utility in
our model helps generate a MPC higher than r.

It follows from (8) that ah ∈ (0, 1) shown in the proof of Proposition 1 in Appendix A
(which contains all the proofs). As pointed out by Wang (2007), the square-root pro-
cess in (3) implies that a higher level of current labor income generates a more volatile
stream of future labor-income levels. Hence the household’s precautionary saving is
larger when its labor income level is higher, causing the household to consume less out
of its human wealth than out of its financial wealth. Such precautionary saving is given
by (1 − ah )ht , which is stochastic. The remaining term in (12), �= ηk2/(2r ) + ϒ/r, can
be rewritten as

�= 1
r

{(
Rk −χ− r)k+ λkk

γθ
Eν

[
1 − exp(−γθq)

]− η

2
k2

}
+ ϒ

r
,

according to (6). Thus � is essentially equal to the present value of expected (risk- and
cost-adjusted) profits from the capital investment. The risk adjustment captures pre-
cautionary saving against capital income jump risks.

2.3 Government

Let G be the exogenous government expenditure at each time. The government has an
exogenous fixed bond supply B at each time. As mentioned above, the government tax
capital income and labor income at flat rates τk and τ�, respectively. The residual ϒ is
used as lump-sum transfer. When ϒ< 0, it becomes lump-sum tax. In a stationary equi-
librium, the government budget constraint is given by

G+ϒ+ rB= τk
1 − τk

(
Rk + λkEν[q]

)
K + τ�

1 − τ�wL, (16)

whereK denotes aggregate capital stock.

2.4 Stationary equilibrium

We now add household-specific index i and conduct aggregation. Aggregate consump-
tion, labor, capital, wealth, and output are given by

Ct ≡
∫
cit di, L≡

∫
�it di, Kt ≡

∫
kit di,Xt ≡

∫
xit di,

Yt ≡
∫
yit di+

λk
1 − τkEν[q]

∫
kit di=AKαt L1−α + λk

1 − τkEν[q]Kt .
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Aggregate output Yt consists of two components: total output generated by firm pro-
duction

∫
yit di and extra output generated by business risk taking. After aggregation, we

are ready to define equilibrium in the steady state.

Definition. Given constant government policy (G, B, τk, τ� ), a stationary competi-
tive equilibrium consists of constant wage w and interest rate r, individual choices
{cit , k

i
t , l

i
t }t≥0 for i ∈ [0, 1], a transfer policy ϒ, and constant aggregate quantities C, Y ,

andK, such that (i) given (w, r ), the processes {cit , k
i
t , l

i
t }t≥0 are optimal choices for each

household i; (ii) the bond, capital, and labor markets all clear∫
bit di= B,X =K +B,

∫
lit di=L;

and (iii) the government budget constraint (16) holds.

By (12), aggregate consumption is given by

C =ϑ(K +B+ ahH + �), (17)

where � is defined in (15) with k = K and we can write aggregate human wealth (from
(11)) as

H ≡
∫
hit di=

wL

r
. (18)

Notice that our model implies a version of aggregate Ricardian equivalence in the fol-
lowing sense. A dollar increase in the government bond supply B can be offset by r dol-
lars decrease in the government transfer. As a result, the changes in B and � offset each
other so that aggregate consumption in (17) does not change with B. All other aggre-
gate equilibrium variables do not change with B either. However, debt policy B has an
impact on the individual decisions and shifts the wealth distribution. Intuitively, every
household prepares exactly enough to offset the consequent change in the lump-sum
transfers/taxes and bond holdings, and this shift has unequal impacts on households in
an environment with uninsurable idiosyncratic risks.

According to the constant-returns-to-scale technology in (2), we can show that the
capital/labor ratio is identical for all households. Thus we have

Rk = (1 − τk )
(
αAKα−1L1−α − δ), (19)

w = (1 − τ� )(1 − α)AKαL−α, (20)

andAKαL1−α = ∫
yit di. Moreover, it follows from (6) that k=K. Then we have

Rk

1 − τkK + w

1 − τ�L=AKαL1−α − δK. (21)

Aggregating the budget constraints (4) and (16) and using (21) and the market-clearing
condition X = K + B, we obtain the resource constraint (so that we verify the Walras’
law)

C +G+ δK + η

2
K2 +χK = Y ,

where aggregate output is given earlier.
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3. Equilibrium analysis

In this section, we first analyze the properties of the stationary wealth distribution taking
prices (interest rate and wage) as given and then study the determination of equilibrium
prices.

3.1 Wealth distribution

To study the wealth distribution, we substitute the optimal consumption rule (5) into
the wealth dynamics (4) to derive

dxt = −ρxxt dt +μx dt +φw�t dt + dJt , (22)

where ρx ≡ψ(β− r ), φ≡ 1 −ϑξ�/w, and

μx ≡ (
Rk −χ− r)k− η

2
k2 −ϑξ0 +ϒ. (23)

Clearly, ρx > 0 if r < β. The termφ represents the marginal propensity to save (MPS) out
of labor income. We restrict parameter values such that φ> 0 in equilibrium.

Let zt ≡w�t denote labor income. It follows from (3) that

dzt = ρ�(Z − zt )dt + σz√zt dW l
t ,

where Z ≡wL and σz ≡ √
wσ�. For ρx > 0 and ρ� > 0, the joint wealth and labor income

process {xt , zt } has a limiting stationary distribution if Eν[ln(1 + q)] <∞ (Jin, Kremer,
and Rüdiger (2020)). The assumption on the jump size distribution ν means intuitively
that large jumps are not strong enough to push the process eventually to infinity. By
a law of large numbers, the stationary distribution of the joint process gives the cross-
sectional stationary distribution of wealth and earnings. This distribution can be derived
numerically using the transform analysis of Duffie, Pan, and Singleton (2000). Instead of
solving for this distribution due to its technical complexity, we first establish an impor-
tant property of optimal consumption and then provide a moment characterization of
the wealth distribution.

Unlike the usual exponential-affine model (e.g., Caballero (1990) and Wang (2007)),
our model setup can generate a positive equilibrium consumption process.

Proposition 2. Suppose that Eν[ln(1 + q)]<∞ and the assumptions in Proposition 1
hold. Then wealth xt has a stationary distribution with the support (μx/ρx, ∞). If ξ0 +
μx/ρx > 0, then optimal consumption ct in a stationary equilibrium is positive for all t.

Notice that the drift of the financial wealth process xt is μx, which may be nega-
tive or positive depending on particular parameter values. As the support of the sta-
tionary wealth distribution is (μx/ρx, ∞), some poor households can be in debt with
negative wealth in the long run if μx < 0. By the optimal consumption rule (5) or (12),
each household consumes a fraction of its financial and human wealth as well as invest-
ment profits at each time. Due to the square-root process specification, labor income
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is positive. Due to innovations or R&D, the household’s financial wealth may jump up
randomly. Thus optimal consumption can never be negative in a stationary equilibrium
if ξ0 + μx/ρx > 0. This assumption ensures that investment profits are large enough to
offset debt.

As is well known, the stationary distribution of the labor income process (square-
root process) is a Gamma distribution. It is positively skewed and has a positive excess
kurtosis (leptokurtic) if σ2

z > ρ�Z or σ2
� > ρ�L. A leptokurtic distribution also implies the

distribution has a tail fatter than the normal distribution. Because there is no closed-
form solution for the stationary wealth distribution, we extend Wang’s (2007) method
to compute moments by incorporating capital income jump risks. We characterize all
moments whenever they exist in closed form by a recursive formula. For a quantitative
analysis, we will use simulations to characterize the full wealth and earnings distribution
in Section 4.

As the mean of xt is X and the mean of zt is Z, let x̃t = xt −X and z̃t = zt −Z. Then
it follows from (22) that the demeaned processes satisfy the dynamics

dx̃t = [−ρxx̃t +φz̃t − λkKEν(q)
]
dt + dJt ,

dz̃t = −ρ�z̃t dt + σz
√
z̃t +ZdW l

t ,

where Jt is a Poisson process with intensity λkK. Let the cross-moment be

Mm,n = E
[
x̃mt z̃

n
t

]
, m, n= 0, 1, 2, � � � .

Proposition 3. Let the assumptions in Proposition 1 hold and let Eν[ln(1 + q)] < ∞.
Suppose that ζj ≡ Eν[qj ]> 0 is finite for 1 ≤ j ≤ j∗ and ζj does not exist for j = j∗ + 1. Then
the moments of the joint stationary distribution of (xt , zt ) satisfy the recursive equation
for 0 ≤m≤ j∗ and n≥ 0:

Mm,n = 1
κm,n

⎡⎢⎣P0(n)Mm,n−1 + P0(n)ZMm,n−2 + P1(m)Mm−1,n+1

+P2(m)Mm−2,n +
m∑
j=3

Pj(m)Mm−j,n

⎤⎥⎦ , (24)

whereM0,0 = 1,M0,1 =M1,0 = 0, κm,n ≡ ρxm+ ρ�n,

P0(n) ≡ 1
2
σ2
z n(n− 1), P1(m) ≡φm, P2(m) ≡ (λkK)

(
m

2

)
ζ2,

Pj(m) ≡ λkK

(
m

j

)
ζj , for 3 ≤ j ≤m.

The momentMm,n does not exist for anym> j∗.

To apply this proposition, we need to initialize the recursion by computing moments
for 0 ≤m< 3 or 0 ≤ n < 2. We provide the details in Appendix A.
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Proposition 4. The variance ratio of wealth to labor income is given by

Var[x]
Var[z]

= φ2

ρx(ρx + ρ� )
+ λkKζ2

2ρxVar[z]
, (25)

where Var[z] = σ2
z Z/(2ρ� ) is the long-run income variance. The correlation between the

wealth and labor income processes is given by

φ

ρx + ρ�

√
Var[z]
Var[x]

. (26)

As equation (22) shows, the variable φ can be interpreted as the MPS out of labor
income. The first term on the right side of (25) is the same as that in equation (53) of
Wang (2007). A larger value of MPS out of labor income induces a larger variance ratio of
wealth to labor income. In the presence of capital assets, the capital income variability
contributes to the wealth variance as well. The second term in (25) reflects this contri-
bution, which comes from the random capital income jump. Equation (26) shows that if
φ> 0, then wealth and labor income are positively correlated.

To understand the income and wealth inequality, we study the skewness and the (ex-
cess) kurtosis, denoted by Skew[x] and Kurt[x] for wealth xt , and by Skew[z] and Kurt[z]
for labor income zt . In Appendix A, we derive the following result.

Proposition 5. Suppose that ζj ≡ Eν[qj ] is finite for 1 ≤ j ≤ 4. Then

Skew[x] = Skew[z]
2
√
ρx(ρx + ρ� )
2ρx + ρ�

[
1 + (λkKζ2 )(ρx + ρ� )

2M0,2φ
2

]−3/2

+ λkKζ3

3ρx(M2,0 )3/2 , (27)

and with�1 > 0 and�2 > 0 given in Appendix A,

Kurt[x] = Kurt[z]
ρx(5ρ� + 6ρx )

(3ρx + ρ� )(2ρx + ρ� )

[
1 + �1ρx(ρx + ρ� )

φ2

]−2

+ 3
φ2(ρ�[ρx(ρx + ρ� )�1 +φ2]+ 3φ2ρx

)
(3ρx + ρ� )

[
ρx(ρx + ρ� )�1 +φ2]2 − 3

+
[

3φ2

ρx(3ρx + ρ� )

σ2
z ZM0,2�1

2(ρx + ρ� )
+�2

]
1

M2
2,0

. (28)

If capital and bonds are perfect substitutes (i.e., λk = χ= η= 0), this proposition is
reduced to equations (62) and (63) in Wang (2007). In this case, the wealth skewness and
kurtosis are smaller than the labor income skewness and kurtosis. This result is related
to Theorem 8 of Stachurski and Toda (2019), which states that the tail thickness of the
model output (wealth) cannot exceed that of the input (labor income) in the standard
BHA model. Our model departs from such a standard BHA model by separating illiquid
capital assets from liquid assets and by introducing capital income jump risk.

Capital income jump risk does not necessarily generate a more positively skewed
and fatter tailed wealth distribution. The first term on the right side of equation (27)
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shows that the risk reduces the wealth skewness relative to the earnings skewness. How-
ever, the second term raises the wealth skewness when ζ3 > 0. Equation (28) shows that
the wealth kurtosis also consists of three components. The capital income jump risk re-
duces the first component (the first line of (28)) as �1 > 0. We can also show that the
second component (the second line of (28)) is negative. Only the last component (the
third line of (28)) can raise the kurtosis of the wealth distribution because �1 > 0 and
�2 > 0. In Appendix A, we show that�2 is positively related to ζ4 > 0.

In summary, the capital income jump risk may not generate higher skewness and
higher kurtosis for the wealth distribution relative to the labor income. The jump size
distribution (the third and fourth moments) is critical to determine the skewness and
kurtosis of the wealth distribution, since the illiquidity of capital and higher-order mo-
ments of the jump risk can control the degree of precautionary saving (as a result of
market incompleteness). As is well known, skewness and kurtosis may not fully capture
the tail behavior of a distribution. In the next subsection, we will provide an explicit
characterization of the tail behavior of the wealth and labor income distributions.

3.2 Exponential tail

To provide a sharp characterization of the tail distribution of wealth, we must specify the
jump size distribution ν explicitly. Following Cai and Kou (2011), we adopt a hyperexpo-
nential distribution (HED), which is a weighted average of n exponential distributions
with nonnegative weights. This type of distribution is flexible and can approximate any
completely monotone distributions (Feldmann I and Whitt (1998)).14 The PDF for the
HED can be written as

f (q) =
n∑
j=1

pj
exp(−q/μj )

μj
, q > 0, (29)

where pj ∈ [0, 1], μj > 0, and
∑n
j=1pj = 1. An economic interpretation is that given an

arrival of innovation, a fraction of pj households draw capital incomes from the expo-
nential distribution with mean μj .

Given the HED (29) for the jump size q > 0, we deduce that Eν[ln(1 + q)] < ∞. It
follows from Jin, Kremer, and Rüdiger (2020) that the joint process {xt , zt } has a station-
ary distribution and its law converges to this distribution exponentially fast. As is well
known, the square-root labor income process zt has a stationary Gamma distribution,
which has an exponential tail. To study the tail property of the stationary distribution
for wealth xt , we analyze the exponential moment of xt as t → ∞, limt→∞E[exp(αxt )]
for α > 0, following Glasserman and Kim (2010), Jena, Kim, and Xing (2012), and Keller-
Ressel and Mayerhofer (2015). Notice that when a limiting stationary distribution exists,
the limiting exponential moment of xt does not depend on the initial value x0. By def-
inition, if the limiting exponential moment is finite for any α ∈ [0, α0 ) for some α0 > 0,

14Cai and Kou (2011) also study more general mixed-exponential distribution (MED) with possibly neg-
ative weights. The MED can approximate any distribution arbitrarily closely. Cai and Kou (2011) show that
HED or MED for the jump size is useful for computing option prices given fat-tailed stock returns.
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but is infinite for any α > α0, then the stationary wealth distribution has an exponential
tail. See Definition 1 in Appendix C for a general definition of tail behavior.

Proposition 6. Given the HED (29) for the jump size and 2ρ�L≥ σ2
� , both the stationary

wealth and labor income distributions have an exponential tail.

In the macroeconomics literature, the wealth and income distributions are often es-
timated by Pareto or power law distributions with fat right tails. Heyde and Kou (2004)
argue that it may be very difficult to distinguish empirically the exponential-type tails
from power-type tails, even for a sample size of 5000 (corresponding to about 20 years
of daily stock return data), although it is quite easy to detect the differences between
them and the tails of a normal density. Given the results of Heyde and Kou (2004), our
quantitative results in Section 4.2 show that our wealth process can match the wealth
distribution data reasonably well, even if the wealth distribution does not have a Pareto
tail.

Proposition 6 shows that both wealth and labor income distributions have exponen-
tial tails in our model. The following proposition characterizes the exponential decay
rates of the stationary wealth and labor income distributions. See Appendix C for a dis-
cussion of differences from Pareto tails.

Proposition 7. Suppose that the jump size follows the HED (29) and φ > 0 in a sta-
tionary equilibrium. Let 2ρ�L ≥ σ2

� . Then both the stationary wealth and labor income
distributions have exponential tails with the exponential decay rates

αx ≡ min
{
g(0), min

j
{1/μj }

}
, αz ≡ 2ρ�

σ2
�

,

respectively, where g is a function defined in the proof of this proposition in Appendix A.

Given our baseline calibration in Table 2, we find that αx = 1/μ2 = 0.0024 and
αz = 0.5546. Thus the wealth distribution has a much smaller exponential decay rate
than the labor income distribution. Intuitively, the exponential decay rate of the wealth
distribution depends on the capital income jump size distribution. If the jump size is
drawn from some exponential distribution with a sufficiently large mean μj , then the
exponential decay rate of the wealth distribution is given by 1/μj , which can be much
smaller than the exponential decay rate of the income distribution αz . The larger is
μj , the smaller is the exponential decay rate of the wealth distribution. Intuitively, the
top wealth shares are essentially determined by those who receive large capital income
jumps. Without investment jump risks, the wealth distribution would have a lighter
tail than the income distribution (Benhabib and Bisin (2018) and Stachurski and Toda
(2019)).

3.3 Aggregate investment and saving

We now use the asset/investment demand and supply analysis of Aiyagari (1994) to un-
derstand the aggregate equilibrium determination. A tractable feature of our model is
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that we do not need to know the full wealth distribution to conduct aggregation. In par-
ticular, only the mean matters for the aggregate. Thus we can compute the stationary
equilibrium quantities and prices independent of the full wealth distribution.

We first derive the aggregate investment demand curve. Combining equations (6)
and (19) yields

(1 − τk )
(
αA(K/L)α−1 − δ)−χ= ηK + r − λkEν

[
1 − exp(−γθq)

]
γθ

. (30)

Because θ is a function of r given in (7), we can use the above equation to derive aggre-
gate capital K as a function of the interest rate r, denoted by K(r ). Then we obtain the
aggregate investment demand curve δK(r ). The lemma below characterizes the proper-
ties ofK(r ).

Lemma 1. Let the assumptions in Proposition 1 hold. Then there is a unique solution
to equation (30) for any r > 0, denoted by K(r ), which is a continuous and decreasing
function of r and satisfies limr→βK(r ) =K(β) and limr→0K(r ) =K(0).

Next, we derive the aggregate saving curve. Aggregate saving S is given by

S ≡ Y −C −G− η

2
K2 −χK

=AKαL1−α + λkEν[q]
1 − τk K −ϑ(K + ahH + �) − η

2
K2 −χK, (31)

where we have substituted the aggregate consumption function in (17) into the above
equation. Since aggregate capital K is a function of r, aggregate output Y is also a func-
tion of r. We use (19) and (20) to derive Rk and w as functions of r, and hence aggregate
consumption is also a function of r by (15) and (18). As a result, S is a function of r. In
Appendix A, we show that

S(r ) = (r + δ−ϑ)K +wL(1 −ϑah/r ) + 1
2
ηK2

(
1 − ϑ

r

)

+ λkK
(
Eν[q] − Eν

[
1 − exp(−γθq)

]
γθ

)
+ (1 −ϑ/r )(rB+ϒ). (32)

Aggregate saving has five components: The first component (r + δ − ϑ)K represents
saving out of capital assets. The second component is precautionary saving against the
Brownian labor income risk. The third component represents saving out of capital re-
turns. The fourth component represents precautionary saving against the capital in-
come jump risk. The last component is proportional to public saving (taxes minus gov-
ernment expenditure excluding lump-sum transfers/taxes).

By the market-clearing condition, aggregate saving is equal to aggregate investment
so that

S(r ) = δK(r ), (33)

which determines the stationary equilibrium interest rate. The following lemma charac-
terizes the aggregate saving function.
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Lemma 2. Let the assumptions in Proposition 1 hold. Then

lim
r↑β S(r )> δK(β) and lim

r↓0
S(r ) = −∞.

The limiting behavior of the saving function is very different from that in Aiyagari
(1994). In his model with time-additive power utility and borrowing constraints, S(r )
approaches infinity as r increases to β and S(r ) approaches the borrowing limit as r de-
creases to zero. In our model with recursive utility and without borrowing constraints,
S(r ) tends to negative infinity as r decreases to zero. That is, households want to bor-
row as much as possible because there is no borrowing constraint. As r increases to β,
the MPC ϑ approaches β = r. Thus the first component of aggregate saving in (32) ap-
proaches δK(β). But all other components of aggregate saving in (32) are nonnegative
and precautionary saving is strictly positive. We thus deduce that aggregate saving ex-
ceeds aggregate investment as r → β.

Combining Lemmas 1 and 2, we immediately obtain the following result.

Proposition 8. Suppose that Eν[exp(−αq)] and Eν[q] are finite for any α> 0. Then there
exists an equilibrium with 0< r < β.

For comparison, we consider two alternative economies for which we modify the
investment demand curve (30) and the saving curve (32):

(i) The complete markets economy with fully insured idiosyncratic risks. In this case,
we have σ� = 0 and each household receives λkEν[q] as capital income to make the ag-
gregate comparison consistent. From (8) and (14), we can show that ah = 1 when σ� = 0.
Then the investment demand δK(r ) can be derived from the following equation:

(1 − τk )
(
αAKα−1L1−α − δ)−χ= ηK + r − λkEν[q].

The saving function becomes

Sc(r ) = (r + δ−ϑ)K +wL(1 −ϑ/r ) + 1
2
ηK2(1 −ϑ/r ) + (1 −ϑ/r )(rB+ϒ).

In steady-state equilibrium, we have Sc(r ) = δK(r ), which leads to r = β = ϑ. Alterna-
tively, one may follow Aiyagari (1994) and take the saving function as r = β.

(ii) The BHA economy with only labor income risks, in which capital and bond assets
are perfect substitutes by assuming η = χ = 0 and each household receives λkEν[q] as
capital income to make the aggregate consistent. Importantly, total returns on bonds
and on capital are identical. In this case, investment demand δK(r ) is determined by

(1 − τk )
(
αAKα−1L1−α − δ)+ λkEν[q] = r,

and the saving function is

SBHA(r ) = (r + δ−ϑ)K +wL(1 −ϑah/r ) + (1 −ϑ/r )(rB+ϒ).

By similar arguments in the proof of Proposition 8, we have 0< r < β.
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Figure 1. Investment and saving functions in three economies. We use the parameter values
obtained from the calibration in Section 4.1.

Figure 1 illustrates the three economies with the parameter values calibrated in the
next section. Notice that the parameter values are not important for the illustrative pur-
pose of our comparison. The investment demand curves are all downward sloping func-
tions of the interest rate r. In the complete markets case, the saving curve intersects the
investment demand curve at the interest rate r = β. The standard BHA economy features
an intersection at 0 < r < β for precautionary saving reasons. In our model economy,
there are additional idiosyncratic investment risks, so the interest rate is even lower. In-
terestingly, the saving function in our model initially increases but later decreases with
the interest rate r. This is due to the different income and substitution effects. The in-
vestment curve intersects the saving curve only once, giving one equilibrium solution
even when the saving function is hump-shaped.

We close this section by discussing the equilibrium level of the capital stock. Angele-
tos (2007) argues that the investment risk raises precautionary saving, but also decreases
investment demand. Thus the net effect on the steady-state capital stock is ambigu-
ous even though r < β. In our model, we have both labor income and investment risks.
Given our calibrated parameter values discussed in the next section, the steady-state
capital stock under incomplete markets of our model is slightly higher than that under
complete markets. The main reason is that the decrease in the investment demand due
to large investment (jump) risks is still dominated by the precautionary-saving effect.
However, when our model is compared to the BHA economy (in which we eliminate
the capital income risk but keep the labor income risk), the investment demand in our
model is much lower, generating a lower level of the steady-state capital stock.

4. Quantitative results

In this section, we calibrate our model and examine its quantitative implications for
the aggregate economy and for the income and wealth distributions. We solve for the
stationary equilibrium numerically and suppose that one unit of time in our model cor-
responds to 1 year.
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4.1 Calibration

We group all model parameters in three sets and choose parameter values such that the
stationary equilibrium of the calibrated model matches the US macro- and micro-level
data.

Standard parameters First, consider {α, δ, ψ, χ, η, β, γ,A,G, B, τk, τ�} (see Table 2).
We set the capital share α = 0.33 as in the macro literature. Set the depreciation rate
δ= 12% to target 16% investment to output ratio in the US data. We set the EIS param-
eter ψ = 1.5 in line with the finance literature on long-run risk, and later we conduct a
sensitivity analysis with respect to ψ. Set the linear maintenance cost parameter χ, the
quadratic maintenance cost parameter η, the subjective discount rate β, and the CARA
parameter γ to target the following equilibrium variables: the interest rate r = 2.5% in
line with the real return of government bonds,15 the equity premium Rk − r = 3.7%,16

the MPC ϑ= 0.20 by (13), in line with most of OECD aggregate MPC measures (Carroll,
Slacalek, and Tokuoka (2014) and Kaplan and Violante (2024)), and the coefficient of rel-
ative risk aversion γC = 5, where C is the aggregate consumption level in the stationary
equilibrium. We normalize the steady-state (after-tax) wage rate to one by adjusting the
TFP parameterA.

Government spending G is set so that the government expenditure to output ratio
is 19% in line with the data. The debt to output ratio is 81%, which is the average be-
tween 2000 and 2016. This period is also used for our distributional statistics discussed
later. Since the model does not feature borrowing constraints and the government has
the lump-sum tax instrument, calibrating the government debt to a different level has
no aggregate consequence because of the Ricardian equivalence discussed before. Both
capital tax and labor income tax rates are set to 25%, so the government collects 25% of
output as tax revenues.17

Earnings process Next, we use the simulated method of moments (SMM) to estimate
the three parameters L, ρ�, and σ� in (3) to target some important statistics in the social
security administrative (SSA) data analyzed by Guvenen et al. (2021).18 We focus on the
statistics of the changes of log (annual) earnings (i.e., approximately annual earnings

15We use the average returns of 1-year Treasury bills and long-term Treasury bonds between 2000 and
2020. The result is robust if we target different maturities, and the target interest rate r is in the range of 2%
to 3%.

16Our calibrated equity premium is the sum of three components. First, 0.7% of the liquidity premium
(because of the maintenance costs of capital), which can be approximated by the average of the spread be-
tweenAAA corporate bonds and treasuries of similar maturity after 2000 (see Krishnamurthy and Vissing-
Jorgensen (2012), Del Negro, Eggertsson, Ferrero, and Kiyotaki (2017), and Cui and Radde (2020)). Second,
2% of the private equity premium for compensating idiosyncratic risks according to Angeletos (2007). Third,
1% of the premium due to other reasons.

17We experiment with different tax rates (available upon request) and find that our results are similar
after recalibration.

18The SSA data cover a long time span from 1978 to 2013, with a substantial sample size (10% random
sample of males aged 25–60). Total annual labor earnings are the sum of total annual wage income from
W-2 forms and the labor portion (2/3) of self-employment income from Schedule SE.
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Table 1. Statistics from the estimated log earnings changes (1 year).

Log-Earnings Changes Std. Dev. Skewness Kurtosis Fraction< 5% < 10% < 20%

Data 0.51 −1.07 14.93 30.6% 48.8% 66.5%
Model 0.51 −0.002 15.94 28.9% 48.7% 68.7%

Note: The data statistics are from Figure 1 and Table 1 in Guvenen et al. (2021). The model result is based on the SMM
estimates ρ� = 0.0033, σ� = 0.1098, and L = 0.8033. Each simulation has 105 agents who start with levels of earnings drawn
from the invariant distribution implied by the earnings process. For each agent, we simulate the earnings for 2 years and
calculate the statistics from the cross-sectional distribution of the log (annual) earnings changes. The calculation is repeated
for 100 times and we take the averages. A minimizer routine is implemented to search for the parameters that minimize the
distance between the model and the data (excluding kurtosis). Each dt is approximated by 1 week, which is 1/52, as a year
has roughly 52 weeks. Therefore, given parameters, the simulation has 105 × 100 × 104 = 1.04 × 109, roughly 1 billion, person-
week observation. Thus, the minimizer routine for the SMM requires 1 billion person-week observations for each function
evaluation.

growth) after controlling for various factors (e.g., education). Since we do not have cor-
responding continuous-time earnings data, it is best to explore both the time-series and
cross-sectional information of the discretized model in (3). The time increment dt cor-
responds to one week, that is, 1/52. Notice that Kaplan, Moll, and Violante (2018) specify
log earnings as the sum of two jump-drift processes and use the SMM approach to es-
timate six parameters. Guvenen et al. (2021) also use this approach to estimate a much
more complicated specification that includes a mixture of normal innovations and a
nonemployment shock. Our square-root earnings process with only three parameters
in (3), however, is designed to be simpler for our tractable analysis, but it still captures
important statistics of earnings growth as shown in Table 1.

The square-root process has a known stationary distribution, which follows the
Gamma type with a shape parameter 2ρ�L/σ2

� and a scale parameter 2ρ�/σ2
� . However,

we do not have an analytical solution for the stationary distribution of the changes of its
logarithmic process, and thus we need to simulate the process. In each of the simulated
samples, we draw from the known stationary distribution of the square-root process and
simulate the process for 2 years. Then we calculate the changes of log (annual) earnings
as well as a few important statistics, which are averaged across samples. To reduce the
variability in the SMM procedure contributed by extreme values of the Gamma distri-
bution that are not easily sampled, we use importance sampling with exponential tilting
adjustment on the shape and scale parameters.19

In the SMM procedure, we consider the standard deviation, the skewness, as well as
the fractions of households whose log earnings changes are less than 5%, 10%, and 20%.
We minimize the sum of the squared errors of these statistics with a certain weighting
matrix. The weighting matrix starts from an identity matrix and is updated once (in-
stead of searching for the optimal weighting matrix, we iterate until the minimizers con-
verge). We find that the statistics from the simulated log earnings changes match the
data reasonably well, except for the skewness. Guvenen et al. (2021) argue that the neg-
ative skewness in the data could be entirely due to unemployment (disaster) shocks,
not captured in our model. In Guvenen et al. (2021), the negative skewness of −1.07 as

19For each pair of parameters of the Gamma distribution, we follow the common procedure in impor-
tance sampling to search for the tilted parameters that minimize the variance.
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Figure 2. Histograms of 1- and 5-year log earnings changes. This figure plots the densities of
1- and 5-year earnings changes from the data of Guvenen et al. (2021) and from our simulated
model, superimposed on Gaussian densities with the same standard deviations.

measured by the third central moment may be driven by extreme observations. To take
this issue into account, they compute Kelley’s skewness, which is robust to observations
above the 90th or below the 10th percentile of the distribution. They find that the asym-
metry (negative Kelley’s skewness) is prevalent across the entire distribution rather than
being driven just by the tails. We find that Kelley’s skewness is close to zero (−0.0001) in
our simulated model. Thus the density of our model simulated log earnings changes is
almost symmetric.

In Table 1, we also report the kurtosis (15.94) from our simulated model, which is
close to the data (14.93). Figure 2 plots the histograms of 1-year and 5-year changes of
log earnings from our simulated model and from the data of Guvenen et al. (2021), su-
perimposed on Gaussian densities with the same standard deviations. The figure shows
that our model densities are close to the data.

Notice that as we normalize the equilibrium wage to 1, the (after-tax) labor income
process is the same as the employment-shock process. This does not have any impact
on the estimation above using changes of log earnings, since the steady-state wage rate
is canceled. Our result shows that the employment shock process can also match the
cross-sectional data.20

It merits emphasis that the square-root earnings process does not feature a Pareto
tail, but it matches many statistics reasonably well in the worldwide inequality database
(WID). This process itself generates a positive skewness for the earnings levels. The very
top earners in the model have reasonable labor income shares compared to the WID.
The average earnings of the top 0.1% people are about 115.6 times of those of the bot-
tom 50% people, while the WID has a factor of about 150–200 (Piketty, Saez, and Zucman
(2018)). Nevertheless, as will be shown later, we can generate an equilibrium wealth dis-

20In a previous version, we use the limiting Gamma distribution to match the PSID data. Thanks to the
comments by the Editor and one anonymous referee, the estimation using the changes of log earnings
improves the quantitative results significantly.
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tribution that is much more right skewed and has a much thicker tail than the earnings
distribution, due to the capital income jumps.

Jump intensity and jump size distribution Finally, we consider the remaining parame-
ters in Table 2 that govern the jump process. The jump intensity parameter λk is set to
5%, and given the equilibrium capital stockK, the annual probability λkK of an innova-
tion or R&D is about 13%. It should be noted that our model allows for both success and
failure of innovations or R&D, because the jump returns may not be enough to compen-
sate the loss arising from maintenance costs. This can happen if the actual jump size is
close to zero. We acknowledge that the success probability varies across different sec-
tors and industries. For example in the pharmaceutical industry, the success probability
ranges from 4% to 15% across different development stages. Therefore, we experiment
with different success probabilities, and recalibrate parameters. We find that the model
implication for the wealth distribution statistics does not change significantly, consis-
tent with the discussion above about the analytical features of the tails.

The jump size distribution ν is important to match the wealth distribution in the
data. We adopt the HED specification in (29). An important advantage of the HED is that
it is analytically tractable as its moment generating function has the following closed
form:

Eν
[
exp(tq)

] =
n∑
j=1

pj

1 −μjt ,

for t <minj{1/μj }. Thus the Laplace transform Eν[exp(−αq)] exists and has a simple an-
alytical expression for all α > 0. This expression will be used in the household decision
rules (6) and (9). Also, notice that the HED in (29) has moments of all orders, which admit
a closed form,

Eν
[
qm

] =m!
n∑
j=1

pjμ
m
j , form≥ 1.

It follows from Proposition 3 that all moments for the wealth process also exist. Clearly,
the wealth distribution in our model does not have a power-law tail. Nevertheless, we
will show later that our calibrated model can still match reasonably well the wealth
shares in the data.

We consider n= 2 components in the HED and choose values ofμ1,μ2, andp1 (note
p2 = 1 − p1) to target three statistics: 13.5% of the average pre-tax private returns to
innovations and/or R&D (i.e., λkEν[q]/(1 − τk ) in the model), and top 0.1% and 20%
wealth shares in the US data. Griffith (2000) documents that the private return is about
27% and can range from 10% to 30% in the US. The public return can be even higher.
Our target of 13.5% for the private return is conservative. Using administrative tax data,
Smith, Zidar, and Zwick (2021) estimate that the top 0.1% wealth share increased from
9.9% in 1989 to 15% in 2016. They also show that the most recent estimates from several
approaches in the literature tell starkly different stories about the level and evolution of
these wealth shares. We choose 14.7% (the average between 2000 and 2016) as our target
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Table 2. Calibrated parameter values.

Value Explanation/Target Value Explanation/Target

β 0.1417 MPC = 0.20 B 1.5798 B/Y = 0.81
γ 4.2250 relative risk aversion 5 G 0.3706 G/Y = 0.19
ψ 1.5000 EIS μ2 409.25 top 0.1% wealth share
α 0.3300 capital share μ1 0.1357 top 20% wealth share
δ 0.1197 I/Y = 0.16 p2 0.0046 average innovation return 13.5%
A 1.3495 w= 1 p1 0.9954 1 −p2

L 0.8033 estimated η 0.0047 Rk − r = 3.7%
ρ� 0.0033 estimated χ 0.0251 interest rate r = 2.5%
σ� 0.1098 estimated λk 0.0500 innovation probability
τ� = τk 0.2500 average tax rates

for the top 0.1% wealth share. We also choose the top 20% wealth share, which is 79.5%,
a conventional target according to Castaneda, Diaz-Gimenez, and Rios-Rull (2003).

In our exercise, targeting the top 0.1% showcases the model’s ability to match the
right tail of the distribution, and targeting the top 20% illustrates the model’s ability
to capture the general features of inequality (e.g., the conventional view of 80-20 rule).
Later, we assess the model’s performance in other statistics. For example, the top 1%
and 10% wealth shares are 31.8% and 66.7%, respectively. Our model turns out to match
these nontargeted statistics well.

To compute the wealth shares in our model, we run 100 simulations and compute
the average. For each simulation, we discretize the equilibrium wealth process xt in (22).
The time increment represents 1 week. In the end, we run 100 simulations of the wealth
process xt , with each simulation having 15 years (52 weeks per year) and 100,000 peo-
ple. Increasing the simulation length and/or the number of people does not change our
results significantly. In equation (22), important parameters that govern the wealth dis-
tribution are μx = −0.1367, ρx = 0.1750, and φ= 0.7537 according to our calibration.

We emphasize that our specification of the HED for the jump size plays an impor-
tant role due to its flexibility. There is a tension between matching the macro and micro
statistics if we adopt a distribution with a limited number of parameters such as the
exponential distribution. Given a particular mean in the aggregate, a mixture of distri-
butions gives the model additional parameters to match the cross-sectional distribution
statistics without affecting aggregate quantities significantly.

Our choice of the mixture of exponential distributions is parsimonious and tractable.
It allows us to match the data reasonably well, especially the top 0.1% wealth share. Of
course, the larger the number n of the component distributions, the more statistics the
model can match. However, as n increases, the probability pj of one of the jumps in the
mixed distribution decreases, making the draw from this jump distribution less likely
to happen. Therefore, increasing n= 2 to n= 4 and above (we experimented with n= 3
and the difference is already small) requires substantially more people in our simulation,
which quickly becomes infeasible even for medium-scale high-performance computing
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Table 3. Wealth distribution statistics (wealth shares and Gini).

Top 0.1% Top 1% Top 10% Top 20% Top 50–10% Bottom 50% Gini

US data 14.7% 31.8% 66.7% 79.5% 32.0% 1.7% 0.824
Model 14.7% 33.5% 63.5% 79.5% 34.8% 1.7% 0.794

Note: The wealth shares of top 0.1%, top 1%, and top 10% are 2000–2016 averages from Smith, Zidar, and Zwick (2021). The
top 20% data is from Table 2 of Castaneda, Diaz-Gimenez, and Rios-Rull (2003) estimated from Survey of Consumer Finances.
Gini coefficient is the 2000–2016 average of data from WID. The rest are the averages between 2000 and 2016 obtained from the
distributional financial account of the Federal Reserve Board. The model statistics are averages of 100 simulations of results
obtained with 15 model years and with dt approximated by 1 week, and each simulation has 100,000 people starting from the
same initial levels of labor income and wealth.

facilities in a normal research institution, while the model outcome is not substantially
improved.21

4.2 Results and sensitivity analysis

Table 3 presents the baseline quantitative steady-state results based on our calibration.
Though not targeted, our model generates about 1.7% wealth share for the bottom 50%,
which is the same as in the data. Our model also generates 34.8% wealth share for the
top 50% to 10%, slightly larger than the data 32%. Given that agents in our model do
not face borrowing constraints, some difference from the data is expected. Notice that
top 1% and top 10% wealth shares in the model are also close to the data. Notably, our
model can match the right tail of the wealth distribution not at the expense of missing
other parts of the distribution. In particular, our calibrated model can match the entire
wealth distribution reasonably well.

As is well known in the literature, it is notoriously challenging for an equilibrium
model to match the extreme right tail of the wealth distribution in the data. The base-
line simulation of our model generates 14.7% wealth share for the top 0.1% people. Com-
pared to the previous literature, our result is much closer to the data. For example, the
model of Kaplan, Moll, and Violante (2018) generates 2.3% of liquid wealth and 7% of
illiquid wealth held by the top 0.1% people. Even with a Pareto-tailed wealth distribu-
tion, the model of Cao and Luo (2017) generates a top 0.1% wealth share of 11%. Notice
that our model-generated top 1% wealth share is higher than the data, but by not too
much. The reason is that the adopted HED specification of the jump size distribution
implies that the wealth shares of the top 0.1% and 1% are closely related. We choose to
let the model hit the top 0.1% wealth share, which is considerably harder, at the cost of
allowing the top 1% wealth share to be slightly higher than the data.

Another way of looking at the tail of the wealth distribution is to plot the counter CDF
in log against the wealth level in log. As is well known, the power law or the Pareto dis-
tribution of wealth implies a negative linear relationship between the two. In Figure 3,
we plot this relationship using a simulated power law with the power parameter 1.58

21The simulation has been tested in a UCL high-performance computing cluster. We optimize the pro-
cedure with parallel computing via Matlab. We use 32 i7 cores and about 200 GB memories.
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Figure 3. Wealth distribution tail. This figure plots the log of the counter CDF of wealth against
the wealth level in log. Specifying a power law distribution for the model simulated wealth data,
we estimate the power parameter to be 1.58. The downward straight line corresponds to this
power law. The curve corresponds to the empirical distribution derived from the same simulated
wealth data.

and the lower bound estimated from the simulated wealth data in our model.22 Notice
that the estimate is close to the US data (see footnote 4). Without assuming a power law,
we also plot the log-log relationship using the same simulated wealth data, which are
known to be generated from an exponential tailed distribution by Proposition 6. The re-
sult suggests that the exponential tailed distribution of wealth generated from the model
is indeed close to a Pareto distribution in finite samples, with sometimes undershooting
and other times overshooting. When we increase the number of exponential distribu-
tions in the HED for the jump size, the model generated log-log line is even closer to
that of a Pareto distribution.

Our model generated wealth Gini coefficient is 0.794, slightly smaller than the data
(0.824). Some households are in debt in our simulations and these households do not
receive government transfers. There are roughly 24% of people having negative wealth,
although none of them have negative consumption.

How do key parameters affect the result presented in Table 3? To address this ques-
tion, we conduct a sensitivity analysis by changing values of some key model param-
eters: the EIS parameter ψ, the risk aversion parameter γ, and the Poisson arrival rate
λk (see Tables 4 and 5). When changing one parameter value, we keep other parameter
values fixed as in the benchmark calibration in Table 2. The sensitivity analysis helps us
better understand our model mechanics.

We first examine the impact of the EIS ψ. Intuitively, consumption/saving behavior
depends on the EIS. On the one hand, the higher the EIS ψ, the larger the substitution
effect, and thus the lower the saving under incomplete markets with r < β. As a result,

22We use the Matlab code plfit.m obtained from https://aaronclauset.github.io/powerlaws/. This rou-
tine estimates the power parameter and the lower bound according to the goodness-of-fit based method
described in Clauset, Shalizi, and Newman (2009).

https://aaronclauset.github.io/powerlaws/
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Table 4. Sensitivity analysis for EIS and risk aversion.

Capital Wealth r (%) MPC (%) Bottom
50%

Share
(%)

Top 10%
Share

(%)

Top 1%
Share

(%)

Top 0.1%
Share

(%)

Gini

Benchmark 2.61 4.18 2.50 20.00 1.7 63.5 33.5 14.7 0.794

ψ=1.60 2.51 4.09 2.98 20.88 6.7 59.1 32.4 14.7 0.717
– and PE 2.61 3.34 2.50 21.17 −1.9 69.4 39.4 18.0 0.862

ψ=1.70 2.40 3.98 3.53 21.61 11.1 55.3 31.5 14.7 0.651
– and PE 2.62 2.57 2.50 22.30 −6.9 77.4 47.4 22.2 0.957

γ =3 2.58 4.17 2.63 19.94 3.1 62.5 33.7 14.9 0.773
– and PE 2.61 3.94 2.50 20.00 0.8 65.2 35.3 15.6 0.812

γ =2 2.54 4.12 2.82 19.84 5.2 60.9 33.6 15.0 0.742
– and PE 2.62 3.60 2.50 20.00 −0.7 67.8 38.3 17.1 0.841

Note: For each parameter, the corresponding row shows the result in the stationary equilibrium; the row labeled “- and PE”
shows the corresponding economy with the prices r and w fixed at the levels of the benchmark economy.

the equilibrium interest rate r rises with the EISψ, ceteris paribus. This can be seen from
the downward shift of the saving curve in the left panel of Figure 1. On the other hand,
the capital/investment demand changes with ψ by (6) or (10), because θ = [ψ(β− r ) +
r]

1
1−ψ in (7) depends on ψ. The value of θ is very sensitive to a small change of ψ under

our calibration compared to changes of other parameter values. We find that θ declines
as ψ increases, and hence the jump risk premium in (10) falls with ψ. But the aggregate
demand for capital slightly increases withψ under our parameterization by (30). It turns
out that the fall in saving dominates so that the equilibrium interest rate r and the capital
return Rk increase with ψ, but the equilibrium capital stock declines with ψ. Aggregate
output and consumption also decline with ψ.

What is the impact on the MPCϑ=ψ(β− r )+ r in our model? An increase inψ raises
the MPC for a fixed r ∈ (0, β).23 As r rises in general equilibrium, this effect reduces ϑ
givenψ> 1. In our numerical experiment, the former direct effect dominates. Therefore,
the MPC increases withψ in general equilibrium. This result also explains why aggregate
saving decreases with ψ as discussed before.

The impact of an increase inψ on wealth inequality depends on four channels. First,
a reduction in saving because of a high MPC reduces the capital stock K, causing the
capital income jump intensity λ= λkK to decline, and thereby reducing the top wealth
shares and wealth inequality. Second, a decrease in the capital stock raises the marginal
product of capital Rk, and hence raises wealth inequality. Third, an increased equilib-
rium interest rate r raises wealth of the rich and middle class households, but reduces
wealth of the poor borrowers, commonly known as the income/wealth effect. At the
same time, households will save more or reduce borrowing, when facing a higher inter-
est rate, commonly known as the substitution effect. Fourth, a decreased capital stock
reduces the marginal product of labor or the equilibrium wage rate w, and thus raises

23By assuming r > β, Weil (1993) shows that the MPC declines as ψ increases.
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Table 5. Sensitivity analysis for jump intensity.

Capital Wealth r (%) MPC (%) Bottom
50% (%)

Top 10%
(%)

Top 1%
(%)

Top 0.1%
(%)

Gini

Benchmark 2.61 4.18 2.50 20.00 1.7 63.5 33.5 14.7 0.794

λk =0.055 2.59 4.16 2.60 19.95 −0.3 66.5 36.2 15.4 0.829
– and PE 2.61 3.99 2.50 20.00 −2.4 69.1 38.0 16.2 0.866

λk =0.060 2.57 4.15 2.68 19.91 −2.1 69.5 39.0 16.0 0.865
– and PE 2.61 3.77 2.50 20.00 −7.0 75.1 42.6 17.5 0.945

Note: For each parameter, the corresponding row shows the result in the stationary equilibrium; the row labeled “- and PE”
shows the corresponding economy with the prices r and w fixed at the levels of the benchmark economy.

wealth inequality. The net effect from the four channels is ambiguous. Table 4 shows
that the top 10%, 1%, and 0.1% wealth shares as well as the wealth Gini coefficient all
decline (some to the third decimal place) with ψ in general equilibrium, but the bottom
50% wealth share increases with ψ. Therefore, the net effect is to reduce wealth inequal-
ity.

When we fix the interest rate r and the wage ratew in partial equilibrium, the capital
return Rk in (2) as a function of w is also fixed and the last three channels vanish. By (6)
or (10), capital demand increases with ψ as the jump risk premium decreases with ψ.
Working in the opposite direction of the first channel generates more wealth inequality
due to higher aggregate capital in partial equilibrium. Moreover, the bottom 50% people
are in debt; for example, their debt is 1.9% of aggregate wealth for ψ = 1.60. This is in
contrast to the case in general equilibrium, in which the increased interest rate (gener-
ated by the increased ψ) induces the poor people to save.

Next, we consider the impact of the risk aversion parameter γ. Table 4 shows that
the impact of a decrease in γ is similar to that of an increase in the EIS ψ. The main
difference is that an increase in γ raises the precautionary saving incentives and pushes
down the interest rate, so the MPC ϑ= ψ(β− r ) + r increases with γ as ψ> 1. The MPC
thus falls when we reduce γ. Therefore, the relationship between inequality and MPC
depends on the source generating the MPC variation. Unlike in the case for the EIS ψ,
the aggregate and distributional effects are much less sensitive to changes in γ.

Finally, we examine the role of jump risks by focusing on the jump intensity param-
eter λk in Table 5. In partial equilibrium with fixed prices, a small increase in λk induces
households to raise capital demand very slightly, but reduce bond holdings, thereby rais-
ing wealth inequality. This effect can also be seen from the negative wealth share of the
bottom 50% and the higher wealth share at the very top 0.1% due to more frequent cap-
ital income jumps.

In general equilibrium, a higher λk pushes the interest rate above the baseline level
because of the decline in savings as well as a slightly higher capital demand. As a re-
sult, the equilibrium level of capital falls slightly. Facing a higher interest rate, aggregate
wealth is higher and the wealth inequality is less severe, compared to the case of partial
equilibrium. Consistent with the effect of a higher interest rate on the saving behavior,
the MPC slightly falls.
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We also experiment with increasing μ2, the larger mean of the component of the
jump size distribution, by 5% and 10%. The qualitative effects on the aggregate and on
the distribution are the same as increasing λk. For simplicity, we do not report this result
in Table 5.

5. Conclusion

In this paper, we have provided a tractable heterogeneous-agent model with incomplete
markets in continuous time; the model can generate a heavier wealth tail than that of the
labor income distribution. We can explain the wealth inequality observed in the data
even if our model generates a wealth distribution that has an exponential tail. Because
Pareto-tailed and some exponential-tailed distributions are almost indistinguishable in
the data with a finite sample, our calibrated model can match the wealth distribution
in the data reasonably well. Our key story is that rich people can build wealth from
rare capital income jumps through technology innovations or R&D and the jump size is
stochastic. The jump size distribution is important to explain the wealth distribution in
the extreme right tail. Our theory provides a new source of wealth inequality and has im-
plications for future empirical research. It would also be interesting for future research
to apply our theory to study how tax policy can affect the wealth inequality.

Appendix A: Proofs

Proof of Proposition 1: Let the value function Vt satisfy

dVt = μt dt + σWt dW l
t + σJt dNt ,

where Nt is a Poisson point process with intensity λt = λkkt . By Appendix B, the HJB
equation is given by

βf (Vt ) = max
ct ,kt

f (ct ) + f ′(Vt )
[
μt + 1

2
u′′(Vt )
u′(Vt )

σWt
(
σWt

)′ + λt Eν[u(Vt + σJt )− u(Vt )
]

u′(Vt )

]
. (34)

Conjecture that the value function takes the form:

Vt = V (xt , �t ) = θ(xt + ξ��t + ξ0 ), (35)

where θ, ξ�, and ξ0 are constants to be determined. By Itô’s lemma, it follows from (50)
and (51) below that

μt = θrxt + θ
(
Rk −χ− r)kt − θη

2
k2
t − θct + θϒt + θw�t + θξ�ρ�(L− �t ), (36)

σWt = θξ�σ�
√
�t , σJt = θqt . (37)

Plugging the above equations into (34) and taking first-order conditions, we have

f ′(ct ) = θf ′(Vt ),

θ
(
Rk −χ− r)− θηkt + λkEν

[
u
(
Vt + σJt

)− u(Vt )
]

u′(Vt )
= 0.
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By (1) and (35), we then obtain (5) and (6):

ct = θ−ψVt = θ1−ψ(xt + ξ��t + ξ0 ), (38)

kt = Rk −χ− r
η

+ λkEν
[
1 − exp(−γθq)

]
ηγθ

. (39)

We now verify the conjecture (35) and derive coefficients. Using (1) and (38), we di-
vide the two sides of (34) by f ′(Vt ) and derive

βVt

1 − 1/ψ
= θ1−ψVt

1 − 1/ψ
+μt − γ

2
σWt

(
σWt

)′ − λt

γ
Eν

[
exp(−γθq) − 1

]
.

Plugging (36), (37), (35), and (38) into the preceding equation, we obtain(
β− θ1−ψ)
1 − 1/ψ

θ(xt + ξ��t + ξ0 )

= θrxt + θ
(
Rk − r −χ)kt − θη

2
k2
t + θw�t + θξ�ρ�(L− �t )

− θθ1−ψ(xt + ξ��t + ξ0 ) + θϒt − γ

2
(θξ�σ� )2�t − λkkt

γ
Eν

[
exp(−γθq) − 1

]
.

Matching coefficients yields(
β− θ1−ψ)
1 − 1/ψ

= r − θ1−ψ, (40)(
β− θ1−ψ)
1 − 1/ψ

ξ� =w− [
ρ� + θ1−ψ]ξ� − γ

2
θ(ξ�σ� )2, (41)(

β− θ1−ψ)
1 − 1/ψ

ξ0 = (
Rk − r −χ)kt − η

2
k2
t − θ1−ψξ0 +ϒt + ξ�ρ�L

− λt

γθ
Eν

[
exp(−γθq) − 1

]
. (42)

Equation (40) gives (7). Simplifying equation (41) gives a quadratic equation

γθ

2
(ξ�σ� )2 + (r + ρ� )ξ� −w= 0.

The unique positive root gives (8). Equation (42) gives (9).
To show ah = (r+ρ� )ξ�

w ∈ (0, 1), define the function

g(x) ≡ γθ

2
(xσ� )2 + (r + ρ� )x−w.

Since g(0) = −w < 0 and g( w
r+ρ� ) = γθ

2 ( wσ�r+ρ� )2 > 0, it follows from the intermediate
value theorem that the positive root ξ� satisfies 0 < ξ� < w

r+ρ� , which is equivalent to

ah = (r+ρ� )ξ�
w ∈ (0, 1).
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Finally, we need to establish the transversality condition. Unfortunately, it is techni-
cally challenging to establish this condition for recursive utility. We leave this for future
research and refer the reader to Beare, Seo, and Toda (2022) for a rigorous treatment in
the case of standard utility functions. Q.E.D.

Proof of Proposition 2: Optimal wealth xt satisfies (22). Solving this equation yields

xt = x0e
−ρxt +μx 1 − e−ρxt

ρx
+

∫ t

0
e−ρx(t−s) dJs +

∫ t

0
e−ρx(t−s)φw�s ds.

Given the square-root process (3) and 2ρ�L ≥ σ2
� , we have �t > 0 for all t. Since Jt only

jumps upward, we have
∫ t

0 e
−ρx(t−s) dJs > 0. We deduce that the support of the long-run

stationary distribution of xt as t → ∞ is (μx/ρx, +∞). Thus the result follows from (5).
Q.E.D.

Proof of Proposition 3: By assumption Eν[ln(1 + q)] < ∞, it follows from Jin, Kre-
mer, and Rüdiger (2020) that the joint process {xt , zt } has a stationary distribution. Let
Dt(m, n) denote the drift of the process x̃mt z̃

n
t . The other part of x̃mt z̃

n
t is martingale terms.

Applying Itô’s lemma, we can derive

Dt(m, n) =mz̃nt x̃
m−1
t

[−ρxx̃t +φz̃t − (λkK)Eν[q]
]

− ρ�ñznt x̃mt + 1
2
n(n− 1)x̃mt z̃

n−2
t (z̃t +Z )σ2

z + (λkK )̃znt Eν
[
(x̃t + q)m − x̃m].

Simplifying yields

Dt(m, n) = −κm,n
(
x̃mt z̃

n
t

)+ 1
2
σ2
z n(n− 1)

(
x̃mt z̃

n−1
t

)+ 1
2
σ2
z n(n− 1)Z

(
x̃mt z̃

n−2
t

)
+φm(

x̃m−1
t z̃n+1

t

)−mz̃nt x̃m−1
t (λkK)Eν(q) + (λkK )̃znt Eν

[
(x̃t + q)m − x̃mt

]
,

where κm,n ≡ ρxm+ ρ�n > 0 and ρx =ϑ− r = ψ(β− r )> 0. By the Binomial expansion
formula

(x̃t + q)m =
m∑
j=0

(
m

j

)
x̃
m−j
t qj ,

(
m

j

)
= m!
j!(m− j)! ,

we have

(x̃t + q)m − x̃mt =
m∑
j=1

(
m

j

)
x̃
m−j
t qj .

Thus we can derive

Dt(m, n) = −κm,n
(
x̃mt z̃

n
t

)+ 1
2
σ2
z n(n− 1)

(
x̃mt z̃

n−1
t

)+ 1
2
σ2
z n(n− 1)Z

(
x̃mt z̃

n−2
t

)
+φm(

x̃m−1
t z̃n+1

t

)+
m∑
j=2

(λkK)

(
m

j

)
x
m−j
t z̃nt ζj ,

where ζj = Eν[qj ]> 0 for q > 0.
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Since x̃mt z̃
n
t is a jump-diffusion process with the driftDt(m, n), we can derive

E
[
x̃mt z̃

n
t

] = e−κm,ntE
[
x̃m0 z̃

n
0

]+
∫ t

0
e−κm,n(t−s)Q(m, n)ds

= e−κm,ntE
[
x̃m0 z̃

n
0

]+ 1
κm,n

(
1 − e−κm,nt

)
Q(m, n), (43)

where

Q(m, n) = P0(n)E
[
x̃mt z̃

n−1
t

]+ P0(n)ZE
[
x̃mt z̃

n−2
t

]+ P1(m)E
[
x̃m−1
t z̃n+1

t

]
+ P2(m)E

[
x̃m−2
t z̃nt

]+
m∑
j=3

Pj(m)E
[
x̃
m−j
t z̃nt

]
and P0(n) = 1

2σ
2
z n(n− 1), P1(m) =φm, P2(m) = (λkK)

(m
2

)
ζ2, and

Pj(m) = (λkK)

(
m

j

)
ζj , 3 ≤ j ≤m.

Since κm,n > 0, taking limits in (43) as t → ∞ yields

E
[
x̃mt z̃

n
t

] = 1
κm,n

Q(m, n).

Then we obtain (24). We can compute moments Mm,n recursively. First, we need to ini-
tialize the recursion. That is, we need to specify the moments when either 0 ≤m< 3 or
0 ≤ n < 2. We have the following results:

M0,0 = 1, M1,0 = 0, M0,1 = 0,

M0,n = 1
κ0,n

[
P0(n)M0,n−1 + P0(n)ZM0,n−2

]
, for n≥ 2,

M1,1 = 1
κ1,1

P1(1)M0,2,

M1,n = 1
κ1,n

[
P0(n)M1,n−1 + P0(n)ZM1,n−2 + P1(1)M0,n+1

]
, for n≥ 2,

M2,0 = 1
κ2,0

[
P1(2)M1,1 + P2(2)M0,0

]
,M2,1 = 1

κ2,1

[
P0(1)M2,0 + P1(2)M1,2

]
,

M2,n = 1
κ2,n

[
P0(n)M2,n−1 + P0(n)ZM2,n−2 + P1(2)M1,n+1 + P2(2)M0,n

]
, for n≥ 2,

Mm,0 = 1
κm,0

[
P1(m)Mm−1,1 + P2(m)Mm−2,0 +

m∑
j=3

Pj(m)Mm−j,0

]
, form≥ 3,

Mm,1 = 1
κm,1

[
P1(m)Mm−1,2 + P2(m)Mm−2,1 +

m∑
j=3

Pj(m)Mm−j,1

]
, form≥ 3.
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Given these values, we can start the recursive iteration for all m≤ j∗ if ζj = Eν[qj ] exists
for 1 ≤ j ≤ j∗. Whenever ζj = Eν[qj ] does not exist for j = j∗ + 1, all moments Mm,n do
not exist form> j∗. Q.E.D.

Proof of Propositions 4 and 5: The proof consists of the following four steps by repeat-
edly applying Proposition 3.

Step 1. We can easily derive the moments for the labor income process:

M0,2 = σ2
z Z

2ρ�
, M0,3 = σ2

z

ρ�
, M0,2 = σ4

z Z

2ρ2
�

,

M0,4 = 3σ4
z Z

4ρ3
�

(
ρ�Z + σ2

z

) = 3σ6
z Z

4ρ3
�

+ 3σ4
z Z

2

4ρ2
�

.

The labor income skewness and (excess) kurtosis are given by

Skew[z] = M0,3

(M0,2 )3/2 = σ2
z

ρ�
(M0,2 )−1/2 =

(
2σ2

z

ρ�Z

) 1
2

, Kurt[z] = M0,4

(M0,2 )2 − 3 = 3σ2
z

ρ�Z
.

Step 2. Applying Proposition 3, we can derive

Var[x] =M2,0 = 1
κ2,0

[
P1(2)M1,1 + P2(2)M0,0

] = 1
2ρx

[
2φM1,1 + (Kσk )2 + (λkK)ζ2

]
.

Since

M1,1 = 1
κ1,1

P1(1)M0,2 = φM0,2

ρx + ρ� ,

we have

Var[x]
Var[z]

= M2,0

M0,2
= φ2

ρx(ρx + ρ� )
+ (λkK)ζ2

2ρxM0,2
= φ2

ρx(ρx + ρ� )
+�1, (44)

where

�1 ≡ (λkK)ζ2

2ρxM0,2
> 0.

The correlation between xt and zt is given by

M1,1√
Var[x]

√
Var[z]

= φ

ρx + ρ�

√
Var[z]√
Var[x]

.

Step 3. To compute the wealth skewness, we apply Proposition 3 to derive

M1,2 = 1
κ1,2

[
P0(2)M1,1 + P1(1)M0,3

] = 1
ρx + 2ρ�

[
σ2
z φM0,2

ρx + ρ� + φσ2
z

ρ�
M0,2

]
= φM0,3

ρx + ρ� ,

M2,1 = 1
κ2,1

P1(2)M1,2 = 2φM1,2

2ρx + ρ� = 2φ2M0,3

(2κx + ρ� )(κ+ ρ� )
,

M3,0 = 1
κ3,0

[
P1(3)M2,1 + P3(3)M0,0

] = P1(3)M2,1 + λkKζ3

3ρx



Quantitative Economics 15 (2024) Capital income jumps and wealth distribution 1231

= 2φ3M0,3

ρx(2ρx + ρ� )(ρx + ρ� )
+ λkKζ3

3ρx
.

The wealth skewness is then given by

Skew[x] = M3,0

(M2,0 )3/2 = 2φ3M0,3(M0,2 )3/2

ρx(2ρx + ρ� )(ρx + ρ� )(M0,2 )3/2(M2,0 )3/2 + λkKζ3

3κx(M2,0 )3/2

= 2φ3(M0,2 )3/2

ρx(2κx + ρ� )(ρx + ρ� )(M2,0 )3/2 Sy + λkKζ3

3κx(M2,0 )3/2

= Skew[z]
2
√
ρx(ρx + ρ� )
2ρx + ρ�

[
1 + (λkKζ2 )(ρx + ρ� )

2M0,2φ
2

]−3/2

+ λkKζ3

3ρx(M2,0 )3/2 .

Step 4. We finally compute the wealth kurtosis. We use Proposition 3 to derive

M2,2 = 1
κ2,2

[
P0(2)M2,1 + P0(2)ZM2,0 + P1(2)M1,3 + P2(2)M0,2

]
= 1

2(ρx + ρ� )

[
σ2
zM2,1 + σ2

z ZM2,0 + 2φM1,3 + P2(2)M0,2
]
,

M1,3 = 1
ρx + 3ρ�

[
P0(3)M1,2 + P0(3)ZM1,1 + P1(1)M0,4

]
= 1
ρx + 3ρ�

[
3σ2

zM1,2 + 3σ2
z ZM1,1 +φM0,4

]
= 1
ρx + 3ρ�

[
3σ2

z φM0,3

ρx + ρ� + 3σ2
z ZφM0,2

ρx + ρ� +φM0,4

]
= φ

ρx + ρ�M0,4.

Plugging the above expression for M1,3 into the above equation for M2,2 and using Step
1 and (44), we can derive

M2,2 = 1
2(ρx + ρ� )

[
2φ2σ2

zM0,3

(2ρx + ρ� )(ρx + ρ� )
+ σ2

z ZM2,0 + 2φ2

ρx + ρ�M0,4

]
+ P2(2)M0,2

2(ρx + ρ� )

= 1
2(ρx + ρ� )

[
φ2σ6

z Z

ρ2
�(2ρx + ρ� )(ρx + ρ� )

+ σ2
z ZM2,0 + 2φ2

ρx + ρ�
(

3σ6
z Z

4ρ3
�

+ 3M2
0,2

)]
+ P2(2)M0,2

2(ρx + ρ� )

= 1
2(ρx + ρ� )

[
φ2σ6

z Z

ρ2
�(2ρx + ρ� )(ρx + ρ� )

+ 2ρ�M0,2M2,0 + 2φ2

ρx + ρ�
(

3σ6
z Z

4ρ3
�

+ 3M2
0,2

)]

+ σ2
z Z�1M0,2

2(ρx + ρ� )

= 1
2(ρx + ρ� )

[
φ2σ6

z Z(5ρ� + 6ρx )

2ρ3
�(2ρx + ρ� )(ρx + ρ� )
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+ 2M2
2,0ρx(ρx + ρ� )

(
ρ�

[
ρx(ρx + ρ� )�1 +φ2]+ 3φ2ρx

)[
ρx(ρx + ρ� )�1 +φ2]2

]
+ σ2

z Z�1M0,2

2(ρx + ρ� )
,

where we have used (44) for the last equality. By Proposition 3, we can compute

M4,0 = 1
κ4,0

[
P1(4)M3,1 + P2(4)M2,0 + P4(4)

]
= 1

4ρx

[
4φM3,1 + P2(4)M2,0 + P4(4)

]
= φ

[
3φM2,2 + P2(3)M1,1

]
ρx(3ρx + ρ� )

+ 1
4ρx

[
P2(4)M2,0 + P4(4)

]
= 3φ2

ρx(3ρx + ρ� )
M2,2 +�2,

where we define

�2 ≡ 3φ2λkKM0,2ζ2

ρx(3ρx + ρ� )(ρx + ρ� )
+ λkK

4ρx
(6M2,0ζ2 + ζ4 )> 0.

Using the above equation forM2,2, we have

M4,0 = 3φ2

ρx(3ρx + ρ� )
M2,2 +�2

= 3φ2

ρx(3ρx + ρ� )

φ2σ6
z Z(5ρ� + 6ρx )

4ρ3
�(2ρx + ρ� )(ρx + ρ� )2

+ 3M2
2,0
φ2(ρ�[ρx(ρx + ρ� )�1 +φ2]+ 3φ2ρx

)
(3ρx + ρ� )

[
ρx(ρx + ρ� )�1 +φ2]2 + 3φ2

ρx(3ρx + ρ� )

σ2
z Z�1M0,2

2(ρx + ρ� )
+�2.

We can now compute the wealth kurtosis as

Kurt[x] = M4,0

M2
2,0

− 3 = 3φ2

ρx(3ρx + ρ� )

φ2σ6
z Z(5ρ� + 6ρx )

4ρ2
�(2κx + ρ� )(ρx + ρ� )2

1

M2
2,0

+ 3
φ2(ρ�[ρx(ρx + ρ� )�1 +φ2]+ 3φ2ρx

)
(3ρx + ρ� )

[
ρx(ρx + ρ� )�1 +φ2]2 − 3

+
[

3φ2

ρx(3ρx + ρ� )

σ2
z Z�1M0,2

2(ρx + ρ� )
+�2

]
1

M2
2,0

.

Using (44), we have

Kurt[x] =
(
M0,2

φ2

ρx(ρx + ρ� )
+�1M0,2

)−2 3φ2

ρx(3ρx + ρ� )

φ2σ6
z Z(5ρ� + 6ρx )

4ρ3
�(2ρx + ρ� )(ρx + ρ� )2

+ 3
φ2(ρ�[ρx(ρx + ρ� )�1 +φ2]+ 3φ2ρx

)
(3ρx + ρ� )

[
ρx(ρx + ρ� )�1 +φ2]2 − 3
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+
[

3φ2

ρx(3ρx + ρ� )

σ2
z ZM0,2

2(ρx + ρ� )
�1 +�2

]
1

M2
2,0

.

By Step 1, we obtain the link between the wealth kurtosis the labor income kurtosis:

Kurt[x] = Kurt[z]
ρx(5ρ� + 6ρx )

(3ρx + ρ� )(2ρx + ρ� )

(
1 + �1ρx(ρx + ρ� )

φ2

)−2

+ 3
φ2(ρ�[ρx(ρx + ρ� )�1 +φ2]+ 3φ2ρx

)
(3ρx + ρ� )

[
ρx(ρx + ρ� )�1 +φ2]2 − 3

+
[

3φ2

ρx(3ρx + ρ� )

σ2
z ZM0,2

2(ρx + ρ� )
�1 +�2

]
1

M2
2,0

.

When�1 =�2 = 0, the results are reduced to those in Wang (2007). Q.E.D.

Proof of Proposition 6: We have the following affine jump-diffusion process

dxt = −ρxxt dt +μx dt +φzt dt + dJt ,
dzt = ρ�(Z − zt )dt + σz√zt dW �

t ,

where μx is given by (23). We compute the exponential moment

E
[
exp

(
uxxt + uzzt

)
|(x0, z0 ) = (x, z)

] = exp
(
A(t ) +Bx(t )x+Bz(t )z

)
,

with the boundary conditions Bx(0) = ux, Bz(0) = uz , and A(0) = 0, where ux > 0 and
uz > 0. Following Duffie, Pan, and Singleton (2000), we obtain a system of ODEs:

Ȧ(t ) = Bx(t )μx + ρ�ZBz(t ) + λkkEν
[
exp

(
Bx(t )q

)− 1
]
, (45)

Ḃx(t ) = −ρxBx(t ), (46)

Ḃz(t ) = −ρ�Bz(t ) +Bx(t )φ+ 1
2

(
Bz(t )σz

)2
. (47)

Then we have Bx(t ) = ux exp(−ρxt )< ux. Given the HED specification for the jump size
distribution ν, we have for ux <minj{1/μj }, Eν[exp(Bx(t )q)]<∞.

There are two equilibrium points of the ODE system (46) and (47) for (Bz(t ), Bx(t )):
(0, 0) and (2ρ�/σ2

z , 0) (see Figure 4). The origin is stable, but the other equilibrium point
is unstable. The stability of this system can be analyzed by computing eigenvalues of
the linearized system as in Glasserman and Kim (2010). They show that there is a sta-
ble set that contains a neighborhood of the origin. The intersection of this region and
R+ × (−∞, minj{1/μj }) gives the stable set for the system (45)–(47). By Keller-Ressel and
Mayerhofer (2015), the set of (ux, uz ) such that

lim
t→∞E

[
exp

(
uxxt + uzzt

)
|(x0, z0 ) = (x, z)

]
<∞

is the same as the stable set of the system of ODEs (45), (46), and (47). Since this set
contains a neighborhood of the origin,

lim
t→∞E

[
exp

(
α
(
uxxt + uzzt

))
|(x0, z0 ) = (x, z)

]
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Figure 4. Vector fields. Also Figure 4.

is finite in the set for all α > 0 sufficiently small, but it is infinite for α > 0 sufficiently
large. Thus we conclude that both the stationary distributions of xt and zt have an ex-
ponential tail to the right by Definition 1. Q.E.D.

Proof of Proposition 7: We continue the analysis in the proof of Proposition 6 by char-
acterizing the stable set more explicitly. By assumption, φ > 0 in a stationary equilib-
rium. We can easily check that the equilibrium point (0, 0) is stable and the equilib-
rium point (2ρ�/σ2

z , 0) is a saddle point. Moreover, there exists a unique saddle path that
converges to the point (2ρ�/σ2

z , 0) by inspecting the phase diagram (see Figure 4). The
points (Bz , Bx ) satisfying 0 = −ρ�Bz+Bxφ+ 1

2 (Bzσz )2 form the nullcline for dBz/dt = 0.
The nullcline for dBx/dt = 0 is the horizontal line Bx = 0.

Let Bx = g(Bz ) denote the saddle path in Figure 4. Then for any Bz(0) = uz , there
exists a unique initial value Bx(0) = ux = g(uz ) such that the ODE system (46) and (47)
has a unique saddle-path solution for Bz(t ) and Bx(t ) = g(Bz(t )) that converges to the
equilibrium point (2ρ�/σ2

z , 0).
The stable set S0 for the ODE system for (Bz(t ), Bx(t )) ∈ R

2+ is given by the region in
the figure, whose nonlinear boundary is the saddle path. Let S denote the intersection
of S0 and R+ × (−∞, minj{1/μj }). Note that for A(t ) in (45) to converge, we must have
Bx(0) = ux <minj{1/μj }. Then S is the stable set for the ODE system (45), (46), and (47).
For any (Bz(0), Bx(0)) in S, we have

lim
t→∞B

x(t ) = lim
t→∞B

z(t ) = 0.

Moreover,

lim
t→∞A(t ) =

∫ ∞

0

{
Bx(t )μx + ρ�ZBz(t ) + λkkEν

[
exp

(
Bx(t )q

)− 1
]}
dt

is finite by Keller-Ressel and Mayerhofer (2015). Then it follows from their work that

lim
t→∞E

[
exp

(
α
(
uxxt + uzzt

))
|(x0, z0 ) = (x, z)

]
<∞,
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for any α(uz , ux ) ∈ S and α> 0. In particular, we have

lim
t→∞E

[
exp(αxt )|(x0, z0 ) = (x, z)

]
,

for any α(0, 1) ∈ S and α > 0. Then we can compute the maximum α such that α(0, 1) ∈
S, giving the exponential decay rate for the stationary distribution of wealth xt . Since the
vertical intercept of the saddle path is equal to g(0), we have

αx = min
{
g(0), min

j
{1/μj }

}
.

Now consider the labor income process zt . We have

lim
t→∞E

[
exp(αzt )|(x0, z0 ) = (x, z)

]
<∞,

for α(1, 0) ∈ S and α> 0. We can compute the maximum α such that α(1, 0) ∈ S. It satis-
fies

−ρ�α+ 1
2

(ασz )2 = 0.

We then obtain the exponential decay rate for the stationary distribution of labor income
zt , αz = 2ρ�

σ2
z

. Thus we have αx < αz , if

min
{
g(0), min

j
{1/μj }

}
<

2ρ�
σ2
z

.

Proof of Lemma 1: The expression on the left-hand side of (30) decreases with K, goes
to −χ− δ asK→ +∞, and goes to +∞ asK→ 0. The expression on the right-hand side
increases with K, goes to +∞ as K→ +∞, and goes to 0 as K→ 0. By the intermediate
value theorem, there is a unique solution to equation (30). Figure 5 shows one numerical
example. Since θ increases with r and Eν[1 − exp(−γθq)]/θ decreases with θ, we have
Eν[1 − exp(−γθq)]/θ decreases with r. Thus the line, denoted by RHS in Figure 5, shifts
up as r increases. ThusK(r ) decreases with r.

We have θ→ β1/(1−ψ) as r → β and θ→ (ψβ)1/(1−ψ) as r → 0. In both cases, there
exists a finite positive solution forK denoted byK(β) andK(0). Q.E.D.

Proof of Lemma 2: Plugging (21) into (31) yields

S =AKαL1−α + λk
1 − τkEν[q]K −G−ϑ(K + ahH + �) − η

2
K2 −χK

= RkK + λkEν[q]K
1 − τk + δK + wL

1 − τ� −G−ϑ(K +B+ ahH + �) − η

2
K2 −χK

= Rk + λkEν[q]
1 − τk K + (δ−ϑ)K + wL

1 − τ�

−ϑB−G−wLϑah
r

−ϑϒ
r

−ϑηK
2

2r
− η

2
K2 −χK.
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Figure 5. LHS and RHS of (30). Also Figure 5.

Using equations (15) and (18), we can derive

S = τk
RkK + λkEν[q]K

1 − τk + (
Rk + λkEν[q] − r)K + (r + δ−ϑ)K

× τ�wL

1 − τ� +wL−G−wLϑah
r

−ϑϒ
r

−ϑηK
2

2r
− η

2
K2 −χK

= (r + δ−ϑ)K +wL(1 −ϑah/r ) −ϑB

+ τk
[
RkK + λkEν[q]K

]
1 − τk + τ�wL

1 − τ� −G

−ϑϒ
r

+ λkK
(
Eν[q] − Eν

[
1 − exp(−γθq)

]
γθ

)
+ 1

2
ηK2

(
1 − ϑ

r

)
,

where the last equality follows from (6) and k = K. After using the government budget

constraint, we have

S = (r + δ−ϑ)K +wL(1 −ϑah/r ) + (1 −ϑ/r )(rB+ϒ)

+ λkK
(
Eν[q] − Eν

[
1 − exp(−γθq)

]
γθ

)
+ 1

2
ηK2

(
1 − ϑ

r

)
.

Notice that the term rB+ϒ reflects the Ricardian equivalence in the aggregate discussed

before.

Now we study the limits. As r → 0, ϑ→ ψβ, K tends to a finite limit, and hence w

tends to a finite limit. As a result, ah tends to a finite limit in (0, 1). If G is sufficiently

small, then rB+ϒ> 0. We deduce that S tends to −∞.
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As r → β, we haveK tends to a finite limitK(β), ϑ→ β, and (1 −ϑah/r ) → 1 − ah ∈
(0, 1). Since

Eν[q] − Eν
[
1 − exp(−γθq)

]
γθ

> 0,

we deduce that S tends to a finite limit, which is larger than δK(β).

Proof of Proposition 8: By Lemmas 1 and 2 and the intermediate value theorem, there
exists a solution r ∈ (0, β) to equation (33). Q.E.D.

Appendix B: Continuous-time recursive utility with jump-diffusion risk

We proceed heuristically to derive recursive utility in continuous time by taking limits
of a discrete time model (Epstein and Zin (1989) and Duffie and Epstein (1992)). Let dt
denote the time increment. The continuation utility Ut at time t satisfies the following
recursive equation:

Ut = f−1[f (ct )dt + exp(−βdt )f (Rt(Ut+dt )
)]

, (48)

where f denotes a time aggregator and Rt denotes the conditional certainty equivalent.
Suppose that the continuation utilityUt in continuous time satisfies the following back-
ward stochastic differential equation:

dUt = μt dt + σWt dWt + σJt dNt , (49)

where Wt is a multidimensional standard Brownian motion and Nt is a Poisson process
with intensity λt . The drift μt and volatility (σWt , σJt ) can be derived given a Markovian
structure. For example, ifUt depends on the state vector (xt , �t ) as in our model, denoted
by Ut =U(xt , �t ) for a smooth function U , we can apply Itô’s lemma to derive

μt = Ux(xt , �t )

[
rxt +

(
Rk − r −χ− η

2
kt

)
kt +ϒ+w�t − ct

]
+U�(xt , �t )ρ�(L− �t ) + 1

2
U��(xt , �t )σ2

� �t , (50)

σWt = U�(xt , �t )σ�
√
�t , σJt =U(xt + qt , �t ) −U(xt , �t ). (51)

Given a small time increment dt, we heuristically write dUt = Ut+dt − Ut . Then we
rewrite (49) as

Ut+dt =Ut +μt dt + σWt dWt + σJt dNt .
By Itô’s lemma, we heuristically write

du(Ut ) = u(Ut+dt ) − u(Ut ) = u′(Ut )
(
μt dt + σWt dWt

)
+ 1

2
u′′(Ut )σWt

(
σWt

)′
dt + (

u
(
Ut + σJt

)− u(Ut )
)
dNt .
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Using λt = λkkt and taking conditional expectations yields

Etu(Ut+dt ) = u(Ut ) + u′(Ut )μt dt + 1
2
u′′(Ut )σWt

(
σWt

)′
dt

+ λtEν
[
u
(
Ut + σJt

)− u(Ut )
]
dt,

Applying a first-order Taylor expansion with respect to dt around zero gives

Rt(Ut+dt ) = u−1
t Etu(Ut+dt ) =Ut +μt dt + 1

2
u′′(Ut )
u′(Ut )

σWt
(
σWt

)′
dt

+ λt
Eν

[
u
(
Ut + σJt

)− u(Ut ))

u′(Ut
] dt.

Following the same procedure again gives

f
(
Rt(Ut+dt )

) = f (Ut ) + f ′(Ut )
[
μt + 1

2
u′′(Ut )
u′(Ut )

σWt
(
σWt

)′
+ λt

Eν
[
u
(
Ut + σJt

)− u(Ut )
]

u′(Ut )

]
dt. (52)

Up to a first-order approximation, we have

exp(−βdt ) = 1 −βdt. (53)

Plugging (52) and (53) into (48), we can derive

f (Ut ) = f (ct )dt + f (Ut ) −β(ct )f (Ut )dt

+ f ′(Ut )
[
μt + 1

2
u′′(Ut )
u′(Ut )

σWt
(
σWt

)′ + λt Eν[u(Ut + σJt )− u(Ut )
]

u′(Ut )

]
dt.

Simplifying yields the continuous-time recursive utility under jump-diffusion uncer-
tainty:

βf (Ut ) = f (ct ) + f ′(Ut )
[
μt + 1

2
u′′(Ut )
u′(Ut )

σWt
(
σWt

)′ + λt Eν[u(Ut + σJt )− u(Ut )
]

u′(Ut )

]
.

Appendix C: Pareto versus exponential tails

In this Appendix, we provide formal definitions of tail thickness and discuss the litera-
ture on the Pareto tails. We then discuss the difference between the Pareto and exponen-
tial tails.

C.1 Definitions

We first use the moment generating function to define tail thickness of random variables
(Stachurski and Toda (2019)).
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Definition 1. Let X be a random variable and h(α) = E[exp(αX )] denote its moment
generating function. If h(α) = ∞ for all α > 0, then X is (right) heavy-tailed. If h(α) is
finite for some α = α0 > 0, then X is light-tailed. If h(α) is finite for all α ∈ [0, α0 ) for
some α0 > 0 and h(α) = ∞ for all α> α0, thenX has an exponential tail. The exponential
decay rate ofX is defined as

α≡ sup
{
α≥ 0 : h(α)<∞}

.

If there is a positive exponent λ called the tail index such that

lim
x→+∞ Pr(X > x) ∼ x−λ, λ > 0,

then X is (right) fat-tailed or Pareto-tailed, where ∼ means same up to a constant. If X
has finite moments of all orders, that is, the tail index λ= ∞, thenX is thin-tailed.

We define the tail behavior of a random variable synonymously with that of its dis-
tribution. It can be shown that the tail probability Pr(X > x) of a light-tailed random
variable X is bounded above by an exponential function (e.g., Lemma 2 of Stachurski
and Toda (2019)). Then Stachurski and Toda (2019) show that

lim sup
x→∞

1
x

ln Pr(X > x) = −α.

This equation gives the intuitive meaning of the exponential decay rate α, which char-
acterizes the decay speed of the tail probability. For light-tailed distributions whose tails
decay faster than any exponential distribution, we have α= ∞.

A heavy-tailed distribution has a tail that decays more slowly than that of any expo-
nential distribution because

lim
x→∞ exp(αx) Pr(X > x) = ∞ for all α> 0.

Then its exponential decay rate α = 0. Fat-tailed distributions are a subclass of heavy-
tailed distributions. Their tails follow a power law or Pareto distribution. By Definition
1, the normal distribution is both light- and thin-tailed. The Pareto distribution is both
heavy- and fat-tailed. The log-normal distribution is heavy-tailed, but not fat-tailed. It
has moments of all orders. A distribution with tail index λ has finite moments of all or-
ders up to the largest integer below λ.

C.2 Pareto tail

To study the income and wealth distributions using BHA-type incomplete markets mod-
els, one often specifies some exogenous state processes that drive the labor income or
capital return fluctuations and then individuals make consumption/saving choices. In
general equilibrium, competitive markets determine the interest rate, the wage rate,
and the wealth distribution. It turns out that such models are notoriously difficult to
match the wealth distribution in the data, especially the wealth shares of the very top
percentiles.
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To understand our model mechanism and its connection to the literature in a simple
unified way, we suppose that there is an exogenous scalar state process zt satisfying

dzt = μz(zt )dt + σz(zt )dW z
t + dJzt ,

whereW z
t is a standard Brownian motion and Jzt is a jump process.

Let the wealth process follow the dynamics

dxt =Rxt xt dt + yt dt − ct dt, (54)

whereRxt denotes the rate of wealth return and yt denotes labor income that is driven by
the state zt . In the standard BHA model, capital assets and bonds are perfect substitutes
and both earn a constant return r, and thus Rxt = r. For either CRRA or CARA utility,
optimal consumption typically takes the following form:

ct =ϑxt +�t ,
where �t depends on labor income yt and ϑ denotes the MPC, which may be different
from (13) depending on model setup. In this case, (54) becomes

dxt = (r −ϑ)xt dt + (yt −�t )dt. (55)

If r < β in equilibrium, we typically have r < ϑ so that xt has a stationary distribution.
Because randomness of xt comes from labor income yt only, the right tail of the wealth
distribution is determined by (yt − �t ). Stachurski and Toda (2019) prove that under
some standard BHA assumptions, the wealth distribution inherits the tail behavior of
the labor income process. (See also Grey (1994), Benhabib, Bisin, and Luo (2017), and
Benhabib and Bisin (2018)). In order to generate a wealth distribution that is fatter or
heavier and more skewed than the labor income distribution and that even has a fat
(Pareto) tail, the literature typically adopts the following two approaches:

1. Kesten process. Saporta and Yao (2005) study the following continuous-time coun-
terpart of Kesten (1973):

dxt =R(zt )xt dt + σ(zt )dW x
t ,

where zt is a Markov jump process. They show that if E[R(zt )]< 0 and Pr(R(zt ) >
0) > 0, then xt has a stationary distribution with a Pareto tail. If R(z) < 0 for all
discrete states z, then xt has a stationary distribution that has finite moments of
all orders. In discrete time, the Pareto tail is generated by stochastic discrete shocks
to the return on wealth such that the wealth return (net of the fraction of wealth
consumed) can exceed 1 with positive probability. Benhabib, Bisin, and Zhu (2011,
2015) apply the Kesten process in discrete time to generate a wealth distribution
with a Pareto right tail.

2. Random growth process. Gabaix (2009) and Gabaix et al. (2016) study the following
process:

d lnxt = μdt + σ dW x
t + dJxt ,



Quantitative Economics 15 (2024) Capital income jumps and wealth distribution 1241

where W x
t is a standard Brownian motion and Jxt is a jump process. They discuss

microfoundations of the random growth process and several ways to stabilize the
process so that a stationary distribution exists. The mathematical logic of gener-
ating a Pareto tail is similar to that for the Kesten process. For the random growth
process, the Brownian motion or jumps drive the fluctuations of the growth rate (or
change in logarithm) of xt , while the local expected growth rateR(zt ) itself is driven
by Markov jumps zt for the Kesten process. Notice that a geometric Brownian mo-
tion xt stopped at an exponentially distributed time has a Pareto tail, but lnxt has
an exponential tail. Based on this observation, Beare, Seo, and Toda (2022) study
the tail probabilities of a light-tailed Markov-modulated Levy process stopped at a
state-dependent Poisson rate. They show that the tails decay exponentially at rates
given by the unique positive and negative roots of the spectral abscissa of a certain
matrix-valued function.

For both types of processes above, we need the wealth return to be random. Since the
equilibrium interest rate is constant, it is important to separate illiquid capital assets
from liquid bond assets and then one can introduce randomness (jumps or Brownian
motion) to capital returns. For tractability, in this paper we adopt the AJD process intro-
duced by Duffie, Pan, and Singleton (2000) in the finance literature. We introduce capital
income jumps that appear in equation (22) in the form of disturbances to the change of
the wealth level, but not to the change of the log level or the growth rate. Wang (2007)
also applies AJD processes. Unlike us, he does not separate capital and bond assets so
that (55) still holds. By computing moments explicitly, he shows that the equilibrium
wealth distribution is counterfactually less skewed and thinner than the income distri-
bution (also see our Proposition 5). His results confirm the finding of Stachurski and
Toda (2019).
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