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A1. Connection to the linear model

A1.1. An SC-rationalizable distribution inconsistent with the linear model

As we pointed out in Section 2 in the main paper, there is a set of population distributions P “

tPpy|xquxP pX that is SC-rationalizable, but not compatible with the linear specification often adopted

in the literature. We now consider a closely related example of such a set of distributions, but with

exactly the same framework as the entry game in Section 5 of the main paper. That is, N “ t1, 2u,

yi P tN,Eu, and xi “ pMPi,MSq P t0, 1u ˆ t0, 1u for i “ 1, 2, with the value of MS being shared by

both players.

The set of distributions P summarized in Table A.1 is SC-rationalizable (one can confirm this

using a part of our program). However, it is inconsistent with pure strategy Nash equilibrium play

under the following specification of payoff functions. For i “ 1, 2, we assume that the payoff of not

entering (N) is always zero and the payoff of entering (E) is given by

πipE, y´i, xi, εq “ αi ` βi MPi ` γi MS ` δi1py´i “ Eq ` εi, (a.1)

with pβi, γiq ą 0 and δi ă 0. In addition, suppose that the joint distribution of pε1, ε2q is absolutely

continuous and fully supported, which is satisfied by many distributions employed in the literature

(such as the joint normal distribution).

To see the inconsistency, it suffices to look at the subtables of Table A.1 with pMP1,MP2,MSq “

p0, 0, 1q, and p0, 1, 1q. Suppose by way of contradiction that this set of distributions is explained as

Nash equilibrium play under the payoff functions specified by (a.1). Then, it must hold that β2 “ 0,
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pMP1,MP2,MSq “ p0, 0, 0q

PpN,Nq PpN,Eq PpE,Nq PpE,Eq

0.250 0.250 0.333 0.167

pMP1,MP2,MSq “ p0, 1, 0q

PpN,Nq PpN,Eq PpE,Nq PpE,Eq

0.167 0.333 0.167 0.333

pMP1,MP2,MSq “ p1, 0, 0q

PpN,Nq PpN,Eq PpE,Nq PpE,Eq

0.167 0.250 0.416 0.167

pMP1,MP2,MSq “ p1, 1, 0q

PpN,Nq PpN,Eq PpE,Nq PpE,Eq

0.083 0.333 0.250 0.333

pMP1,MP2,MSq “ p0, 0, 1q

PpN,Nq PpN,Eq PpE,Nq PpE,Eq

0.083 0.416 0.250 0.250

pMP1,MP2,MSq “ p0, 1, 1q

PpN,Nq PpN,Eq PpE,Nq PpE,Eq

0.083 0.333 0.167 0.416

pMP1,MP2,MSq “ p1, 0, 1q

PpN,Nq PpN,Eq PpE,Nq PpE,Eq

0.083 0.333 0.250 0.333

pMP1,MP2,MSq “ p1, 1, 1q

PpN,Nq PpN,Eq PpE,Nq PpE,Eq

0.083 0.250 0.167 0.500

Table A.1: An SC-rationalizable P inconsistent with the linear model

since PpN,N |0, 1, 1q ´ PpN,N |0, 0, 1q “ 0. Indeed, letting µ be the induced probability measure of

pε1, ε2q, this difference is equal to the difference between

µ ptpε1, ε2q : α1 ` γ1 ` ε1 ă 0 and α2 ` β2 ` γ2 ` ε2 ă 0uq

and

µ ptpε1, ε2q : α1 ` γ1 ` ε1 ă 0 and α2 ` γ2 ` ε2 ă 0uq .

Then, our hypothesis on the distribution ensures that β2 “ 0. On the other hand, we also have

PpE,E|0, 1, 1q ´ PpE,E|0, 0, 1q ą 0, which implies that the difference between

µ ptpε1, ε2q : α1 ` γ1 ` δ1 ` ε1 ě 0 and α2 ` β2 ` γ2 ` ε2 ě 0uq

and

µ ptpε1, ε2q : α1 ` γ1 ` δ1 ` ε1 ě 0 and α2 ` γ2 ` ε2 ě 0uq

is positive. This, in turn, implies that β2 ą 0, contradicting the preceding argument. Note that,

here, we only use the frequencies of pN,Nq and pE,Eq, which always arise as unique equilibria, and

hence a selection scheme from multiple equilibria does not matter.
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A1.2 Statistical tests of nonparametric and linear models

We have shown that the set of distributions depicted in Table A.1 is SC-rationalizable, but incompat-

ible with the parametric specification in (a.1). In what follows, using simulation data, we examine

whether this difference is in fact empirically relevant. Specifically, we generate random samples

using the set of distributions in Table A.1 and check how often SC-rationalizability is rejected and

how often the linear specification is rejected. In Kline and Tamer (2016), they provide a procedure

to estimate the identified set of coefficients in (a.1); i.e. θ :“ pα1, β1, γ1, δ1;α2, β2, γ2, δ2q. As they

pointed out in their paper, their procedure can also work as a test for model (mis-)specification

by checking whether the estimated identified set is nonempty. Therefore, we also implement the

Kline-Tamer test to the same set of samples to check if each of them is supported by the linear

model.

Before proceeding to the result, we briefly refer to how Kline and Tamer’s test works. They

consider a nonegative function that summarizes the relationship between P and θ, say, M pθ,Pq,

under suitable sign restrictions (in the current case, pβi, γiq ą 0 and δi ă 0 for i “ 1, 2). This function

is designed so that θ can generate P if and only if M pθ,Pq “ 0. The set ΘI “ tθ : M pθ,Pq “ 0u is

then interpreted as the identified set for θ. To deal with empirical distributions Q, they introduce

an exogenous tolerance parameter ρ ą 0 so that the set estimation of ΘI is such that pΘI “

tθ : M pθ,Qq ď ρu , and one can conclude that the specification is valid if pΘI ‰ H. Since there is

no guide in the paper to select this parameter, we report results for the tolerance parameter they

use, which is ρ “ 0.075.

Recall that the structure of the model behind P in Table A.1 is the same as the empirical data

set in Section 5 of the main paper. We generate 100 samples from P such that each sample has

the same size N “ 7882 and the same fraction of realization of each x P t0, 1u3 as the data set in

Section 5. We find that 92 samples (out of the 100) pass our test with 5% significance level, while

Kline and Tamer’s procedure cannot find nonempty identified sets for any of these samples. Thus

both the Kline-Tamer procedure and our SC-rationalizability test are working as they should: the

former rejecting the linear model and the latter not rejecting the nonparametric model.

Power of the nonparametric test. Note that the preceding result suggests that Kline and

Tamer ’s approach has very good power to detect model misspecification, since their results find

empty sets for the parameters in all the samples generated by P (as it should, since P is inconsistent
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pMP1,MP2,MSq “ p0, 0, 0q

PpN,Nq PpN,Eq PpE,Nq PpE,Eq

0.255 0.265 0.337 0.143

pMP1,MP2,MSq “ p0, 1, 0q

PpN,Nq PpN,Eq PpE,Nq PpE,Eq

0.151 0.336 0.193 0.330

pMP1,MP2,MSq “ p1, 0, 0q

PpN,Nq PpN,Eq PpE,Nq PpE,Eq

0.167 0.240 0.441 0.152

pMP1,MP2,MSq “ p1, 1, 0q

PpN,Nq PpN,Eq PpE,Nq PpE,Eq

0.078 0.332 0.254 0.337

pMP1,MP2,MSq “ p0, 0, 1q

PpN,Nq PpN,Eq PpE,Nq PpE,Eq

0.080 0.445 0.233 0.242

pMP1,MP2,MSq “ p0, 1, 1q

PpN,Nq PpN,Eq PpE,Nq PpE,Eq

0.093 0.319 0.155 0.434

pMP1,MP2,MSq “ p1, 0, 1q

PpN,Nq PpN,Eq PpE,Nq PpE,Eq

0.088 0.302 0.245 0.366

pMP1,MP2,MSq “ p1, 1, 1q

PpN,Nq PpN,Eq PpE,Nq PpE,Eq

0.087 0.263 0.164 0.487

Table A.2: Non SC-rationalizable distribution P 1

with the linear model). It would be interesting to see if our test can also reject samples generated by

distributions inconsistent with our model. To check this, we generated 100 samples from another

set of distributions, which we shall refer to as P 1, which is not SC-rationalizable. In particular, to

see whether our test can detect subtle inconsistency, we use P 1 summarized in Table A.2. P 1 is not

too different from P in Table A.1 and, in fact, it is equal to the empirical distribution of one of the

samples from P , with a p-value equal to 0.01. Out of 100 samples drawn from P 1, we find that 97

samples fail our test, which implies that our test has strong testing power.

A2. Multi-dimensional action spaces

In the main paper, we assume that the set of actions of each player i P N “ t1, 2, ..., nu, Yi, is a

finite and totally ordered set (in other words, it is a finite chain). In this section, we show that all

our results are valid, as long as every Yi is a product of finite chains. In what follows, let us write

for each i P N , Yi “ ˆ
Kpiq
k“1 Yik where every Yik is a finite chain.

As shown by Milgrom and Shannon (1994), the counterpart of the Basic Theorem for multi-

dimensional action spaces requires quasisupermodularity in addition to the single-crossing differ-

ences.1 To be precise, BRipy´i, xiq “ argmaxyiPYi
Πipyi,y´i, xiq is monotone in py´i, xiq if the

payoff function Πi is quasisupermodular in yi and obeys single-crossing differences in pyi;y´i, xiq.

Given that Yi is assumed to be a product of chains, it is straightforward to show that the combi-

1 Let A be a lattice. A function F : A Ñ R is quasisupermodular if F pa1 _ a2q ´ F pa2q ą pěq 0 whenever
F pa1 ^ a2q ´ F pa1q ą pěq 0.
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nation of quasisupermodularity and condition (4) in the main paper is equivalent to the following

stronger version of single-crossing differences: for every nonempty set J Ă t1, 2, . . . , Kpiqu, y2
iJ ą y1

iJ

and py2
ip´Jq,y

2
´i, x

2
i q ą py1

ip´Jq,y
1
´i, x

1
iq,

Πi

`

y2
iJ , y

1
ip´Jq,y

1
´i, x

1
i

˘

ąΠi

`

y1
iJ , y

1
ip´Jq,y

1
´i, x

1
i

˘

(a.2)

ùñ Πi

`

y2
iJ , y

2
ip´Jq,y

2
´i, x

2
i

˘

ą Πi

`

y1
iJ , y

2
ip´Jq,y

2
´i, x

2
i

˘

.

Note that, here, yiJ and yip´Jq denote the subvectors on J and its complement respectively that

together constitute yi. In other words, if over some subset of dimensions J , the agent prefers a higher

action y2
iJ to a lower one y1

iJ , keeping fixed the actions on the other dimensions and the covariates,

then that preference is maintained if actions on the other dimensions and/or the covariates are

raised. Let SC be the set of profiles of payoff functions Π “ pΠ1,Π2, ...,Πnq in which every Πi obeys

the single-crossing differences in the sense of (a.2). The following result is the multi-dimensional

analog to the Basic Theorem in the main paper.

Basic Theorem1. If Π P SC, the family of games tG pΠ,xq : x P Xu has the following properties:

(i) BRipy´i, xiq is increasing in py´i, xiq for each i P N and

(ii) NE pΠ,xq is non-empty.

The notions of (generalized) group types, single-crossing group types and the RM axiom can all

be straightforwardly extended to the case where each player has a multidimensional action space.

With this theorem, it is clear that all our notions can be trivially adjusted to the current setting

using exactly the same notation. It is also easy to see that all our results are valid, if the RM axiom

still characterizes a group type consistent with the model even in multi-dimensional setting. In the

rest of this section, we show that this is indeed the case:

The next results states that Theorem 1 can be also extended to the case of multi-dimensional

action spaces.

Theorem A.1. A generalized group type B : pX Ñ Y is a single-crossing group type if and only if

it satisfies the RM axiom.

Proof. The Basic Theorem guarantees that if B is a single-crossing group type, then it obeys

the RM axiom. It remains for us to show the converse. Our strategy is to explicitly construct
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payoff functions that rationalize B and satisfies single-crossing differences in the sense of (a.2). Our

strategy is to construct a payoff function Π : Yi ˆ Y´i ˆ Xi Ñ R of the form

Πipyi,y´i, xiq “

Kpiq
ÿ

k“1

Πikpyik,y´i, xiq, (a.3)

with each Πikpyik,y
t
´i, x

t
iq having increasing differences: for every y2

ik ą y1
ik, and py2

´i, x
2
i q ą py1

´i, x
1
iq,

Πikpy2
ik,y

2
´i, x

2
i q ´ Πikpy1

ik,y
2
´i, x

2
i q ě Πikpy2

ik,y
1
´i, x

1
iq ´ Πikpy1

ik,y
1
´i, x

1
iq. (a.4)

It is easy to see that, then, Πi also obeys the increasing differences, which in turn implies single-

crossing differences in the sense of (a.2). We also ensure that for each py´i, xiq, BRipy´i, xiq is a

singleton for every xi P Xi.

Similar to the proof of Theorem 1 in the main paper, we introduce the following notation.

For each i P N , Zi “ Y´i ˆ Xi. Since pX is finite, gathering together with the finiteness of

every Yi, the graph of Bpxq, which we represent as GpBq :“
!

py,xq : y P Bpxq for some x P pX
)

is also finite. Hence, with a suitable finite set of indices T “ t1, 2, ..., T u, it can be written as

GpBq “ tpyt,xtq : yt P Bpxtq for some t P T u. Notice that, letting zti :“ pyt
´i, x

t
iq for t P T , each

pyt,xtq P GpBq can be written as pyti , z
t
iq for every i P N .

Repeating the procedure in the proof of Theorem 1 in the main paper, for every i P N and

k “ 1, 2, ..., Kpiq, we obtain Πik : Yik ˆ Zi Ñ R such that Πipy
2
ik, z

2q ´ Πipy
1
ik, z

2q ě Πipy
2
ik, z

1q ´

Πipy
1
ik, z

1q for all y2
ik ą y1

ik, and that ytik “ argmaxyikPYik
Πikpyik, z

t
iq for every t P T . (Just replace

Yi there with Yik.) Using these Πik’s, it is clear that for every t P T , a multi-dimensional action

yti “ pyti1, ..., y
t
iKpiqq is the unique maximizer of Πipyi, ziq “

řKpiq
k“1 Πikpyik, ziq at zti for every t P T .

Lastly, with Yi taking only finitely many values, we can always guarantee that Πip¨, zq has strict

preference over Yi at every value of Zi by perturbing fik if necessary. QED

A3. More results on inference and predictions

This section contains results omitted from Section 3.4 of the main paper. In the first subsection,

we explain how we can obtain a tight bound on the probability that an agent has a given ranking

between a pair of actions. The second subsection expands on the discussion of Nash equilibrium
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predictions in Section 3.4 (Application 2) and also establishes that the set of Nash equilibrium

predictions increases with the covariate, in a sense related to first order stochastic dominance.

Throughout we shall assume that P “ tPp¨ | xquxP pX is SC-rationalizable. Recall (from Theorem

2) that P is SC-rationalizable if and only if there exists a distribution τ “ pτBqBPB on B (the set of

group types obeying the RM axiom) such that

Ppy|xq “
ÿ

tBPB: Bpxq“yu
τB for all y P Y and x P pX. (a.5)

A3.1. Predicting player preferences

We are interested in estimating the proportion of groups in the population where agent i prefers

some action y2
i over another action y1

i, when the covariate takes a specific value x˚
i and other players

are playing a given profile of strategies y˚
´i. In formal terms, letting z˚ “ py˚

´i, x
˚
i q, we would like

to identify the maximal and minimal possible probabilities of

S “ tΠ P SC : Πi satisfies Πipy
2
i , z

˚q ą Πipy
1
i, z

˚)u. (a.6)

Letting py,xq P Yˆ pX so that y “ pyi,y
˚
´iq and x “ px˚

i ,x´iq, it is clear that PrpSq ě Ppy|xq. But,

in fact, we can obtain a sharper lower bound for PrpSq by exploiting the assumption that players

have single-crossing payoff functions.

Proposition A.1. Suppose that P “ tPp¨|xquxP pX is SC-rationalizable by some distribution PΠ.

Then for S defined by (a.6),

mpy2
i , y

1
iq ď

ż

S

dPΠ

where mpy2
i , y

1
iq is defined as follows:

• if y2
i ą y1

i then mpy2
i , y

1
iq “ min

ř

BPB τ
B subject to τ solving (a.5), with

B “ tB P B : Bpxq “ py2
i ,y´iq and py´i, xiq ď z˚ for some x P pX u; (a.7)

7



• if y2
i ă y1

i then mpy2
i , y

1
iq “ min

ř

BPB τ
B subject to τ solving (a.5), with

B “ tB P B : Bpxq “ py2
i ,y´iq and py´i, xiq ě z˚ for some x P pX u. (a.8)

Proof. We consider the case where y2
i ą y1

i, since the case where y2
i ă y1

i proceeds in analogous

fashion. Let

S 1 “ tΠ P SC : Π rationalizes some group type in Bu,

where B is defined by (a.7). Then, for each Π P S 1 and B P B rationalized by it, there exists some

x P pX for which Bpxq “ py2
i ,y´iq and py´i, xiq ď z˚, and Πipy

2
i ,y´i, xiq ą Πipy

1
i,y´i, xiq. Since

py´i, xiq ď z˚ and Πi obeys single-crossing differences, the above implies that Πipy
2
i , z

˚q ą Πipy
1
i, z

˚q.

Thus, the weight on S 1 should be weakly smaller than that on S, and we conclude that

ÿ

BPB
τB “

ÿ

BPB

ż

PpB|ΠqdPΠ “

ż

ÿ

BPB
PpB|ΠqdPΠ ď

ż

S1

dPΠ ď

ż

S

dPΠ,

where PpB|Πq stands for the (unobserved) probability that B realizes conditional on Π. Note that

the first equality follows, since for each B, τB “
ş

PpB|ΠqdPΠ holds whenever τ solves (a.5), that

the penultimate inequality holds, since
ř

BPB PpB|Πq does not exceed 1 and equals 0 if Π R S 1,

and that the final inequality flows from S 1 Ă S. Given that τ must obey (a.5), a lower bound on
ř

BPB τ
B is mpy2

i , y
1
iq, which proves our claim. QED

Since there is typically more than one distribution PΠ that SC-rationalizes P , the probability

of S would typically only be partially identified. Proposition A.1 says that there is a uniform lower

bound on the probability of S, which is mpy2
i , y

1
iq. It follows immediately from this proposition that

there is also a uniform upper bound on the probability of S, which is 1 ´ mpy1
i, y

2
i q and thus we

conclude that for any PΠ that rationalizes P ,

mpy2
i , y

1
iq ď

ż

S

dPΠ ď 1 ´ mpy1
i, y

2
i q. (a.9)

We can calculate mpy2
i , y

1
iq and mpy1

i, y
2
i q from the conditional choice distributions by solving the

relevant linear program. The next result strengthens Proposition A.1 by showing that the bounds

in (a.9) are tight.
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Proposition A.2. There is a distribution PΠ with support on SC that rationalizes P and satisfies

mpy2
i , y

1
iq “

ż

S

dPΠ; (a.10)

similarly, there is another distribution PΠ with support on SC that rationalizes P and satisfies

ż

S

dPΠ “ 1 ´ mpy1
i, y

2
i q. (a.11)

Proof. Notice that (a.11) is equivalent to there being a distribution PΠ with support on SC such

that
ş

Ŝ
dPΠ “ mpy1

i, y
2
i q where

Ŝ “ tΠ P SC : Πi satisfies Πipy
2
i , z

˚q ă Πipy
1
i, z

˚)u.

Therefore, to prove (a.9), it suffices to establish (a.10).

We first consider the case where y2
i ą y1

i. Suppose that τ “ τ solves min
ř

BPB τ
B subject

to τ satisfying (7) in the main paper, with B given by (a.7), so that mpy2
i , y

1
iq “

ř

BPB τ
B. We

know from our proof of Theorem 2 (see the discussion immediately preceding the statement of the

theorem in Section 3.2) that P can be rationalized by a distribution P˚
Π that gives weight of τB

to a profile ΠB P SC that rationalizes B; by taking strictly increasing transformations if necessary,

we can guarantee that ΠB ‰ ΠB1

for any B ‰ B1. If B P B, then any ΠB that rationalizes B will

satisfy ΠB
i py2

i , z
˚q ą ΠB

i py1
i, z

˚q, so
ş

S
dP˚

Π ě mpy2
i , y

1
iq. We claim that (a.10) in fact holds for the

distribution P˚
Π. To show this, it suffices to prove that if B R B then there is ΠB P SC rationalizing

B such that ΠB
i satisfies

ΠB
i py2

i , z
˚q ă ΠB

i py1
i, z

˚q, (a.12)

so that ΠB R S. In what follow, we fix some B P BzB and explicitly construct ΠB that rationalizes

B and Πi satisifes (a.12).

Since B is chosen from B, the existence of Π P SC that rationalizes it is ensured. Hence, the

only issue is whether we can find Π so that Πi obeys (a.12). To construct such Πi, we start from

specifying the ordinal contents of it. Let us define Z :“ Y´i ˆprojiX, and denote a typical element

py´i, xiq by z. For z “ py´i, xiq, if there is some x P pX such that xi is the i-th component of it and
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y´i is specified by Bpxq, then we denote it by zpxq. Similarly, when yi P Yi is specified by Bpxq at

some x P pX, then we denote it by yipxq. Now, define the binary relation ą on Yi ˆZ as follows: for

any pair pȳi, zq and pŷi, zq with ȳi ą ŷi,

(i) pȳi, zq ą pŷi, zq, if there is x P pX for which zpxq ď z and yipxq “ ȳi.

(ii) pŷi, zq ą pȳi, zq, if there is x P pX for which zpxq ě z and yipxq “ ŷi.

(iii) pŷi, zq ą pȳi, zq, for all other cases.

We claim that the above defined ą has the following properties: (P1) ą rationalizes the group

type B; (P2) py1
i, z

˚q ą py2
i , z

˚q; (P3) any two distinct pȳi, zq and pŷi, zq are strictly comparable;

(P4) ą is transitive on Yi ˆ tzu for any z P Z; (P5) ą has the single-crossing property in the

sense that if py‹‹
i , zq ą py‹

i , zq for some y‹‹
i ą y‹

i then py‹‹
i ,rzq ą py‹

i ,rzq for any rz ą z. Assuming

that these properties hold, it is clear that any function Πi that represents ą (in the sense that

Πipy
‹‹
i , zq ą Πipy

‹
i , zq whenever py‹‹

i , zq ą py‹
i , zq) will be a payoff function that obeys single-crossing

differences, rationalizes i’s actions, and (because of (P2)) satisfies (a.12). Note that the existence

of a representation for ą is clear since ą satisfies (P3) and (P4) and Yi is a finite set.

(P1) follows from parts (i) and (ii) of the definition of ą and (P5) from part (i). Notice that it

follows immediately from the definition of ą that either pȳi, zq ą pŷi, zq or pŷi, zq ą pȳi, zq must hold,

for any ŷi ă ȳi. Furthermore, since B is chosen from B, due to the RM axiom, they cannot hold

simultaneously because conditions (i) and (ii) in the definition of ą cannot both be satisfied. Thus

we have established (P3). Since B R B, we know that for y2
i and y1

i, we cannot have py2
i , z

˚q ą py1
i, z

˚q

as a result of (i) holding. Therefore, we must have py1
i, z

˚q ą py2
i , z

˚q, which is (P2). It remains for

us to show (P4). Suppose instead that transitivity is violated. Then there must be y‹
i , y

‹‹
i , y‹‹‹

i ,

and z such that y‹‹
i ą y‹

i , y
‹‹‹
i and py‹

i , zq ą py‹‹
i , zq ą py‹‹‹

i , zq. By definition, py‹‹
i , zq ą py‹‹‹

i , zq

can only occur if there is z1 ď z and x P pX such that z1 “ zpxq and y‹‹
i “ yipxq. But this also

implies that py‹‹
i , zq ą py‹

i , zq, which means (by (P3)) that we cannot have py‹
i , zq ą py‹‹

i , zq.

To recap, we have shown that if y2
i ą y1

i then the distribution P˚
Π rationalizes the data and

satisfies (a.10). It remains for us to prove the same result for y2
i ă y1

i. Using an analogous proof

strategy, we need to show that for any B R B, we can find ΠB P SC rationalizing B such that ΠB
i

satisfies (a.12) and so Π R S. The proof proceeds by defining ą in the following way: for any
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pair pȳi, zq and pŷi, zq with ŷi ă ȳi, (i) if there is x P pX such that zpxq ď z and yipxq “ ȳi, then

pȳi, zq ą pŷi, zq; (ii) if there is x P pX such that zpxq ě z and yipxq “ ŷi, then pŷi, zq ą pȳi, zq; (iii)

if neither (i) nor (ii) holds then pȳi, zq ą pŷi, zq. In other words, the definition is the same as the

one for the other case, except that (iii) has been modified. One could check that (P1) to (P5) hold

and, in particular, (the new version of) (iii) guarantees (P2) since we now assume y2
i ă y1

i. With

these properties on ą, there is a function Πi that represents ą and it will be a payoff function that

obeys single-crossing differences, rationalizes i’s actions, and satisfies (a.12). QED

A3.2. Nash Equilibrium predictions

In Section 3.4 of the main paper we posed the following question: given a strategy profile y and

covariate x, what is the greatest possible fraction of groups which have y as a pure strategy Nash

equilibrium at x, among all the possible SC-rationalizations of P? In this section, we pose a more

general question: as a result of Nash equilibrium play with monotone best responses, what are the

possible distributions of joint actions at the covariate value x? In formal terms, this amounts to

identifying the set of conditional distributions Pp¨|xq such that the augmented set of distributions

P Y tPp¨|xqu is still SC-rationalizable.

Let B : txu Y pX Ñ Y be a group type defined on the enlarged domain txu Y pX. Let rB be the

set of all group types defined on this domain that obey the RM axiom; obviously this set is finite.

Applying Theorem 2, we know that P Y tPp¨|xqu is SC-rationalizable if and only if we can find a

probability distribution rτ “ prτBqBP rB over rB such that

Ppy|xq “
ÿ

tBP rB : Bpxq“yu
τ̃B for each y P Y and x P pX, and (a.13)

Ppy|xq “
ÿ

tBTP rB : Bpxq“yu
τ̃B for each y P Y. (a.14)

Note that the left hand side of the equations in (a.13) are distributions in P , so those equations

constitute conditions that rτ has to satisfy. For any rτ that satisfies those conditions, the resulting

Pp¨|xq obtained from (a.14) is a predicted distribution at x. In other words, if we let Ppxq be the

set of predicted distributions at x, then Pp¨|xq is in Ppxq if and only if there is rτ that solves (a.13)

and (a.14). Since the conditions are linear, Ppxq is a convex set and its properties can be found by

further investigating the linear program.

11



The following result states that Ppxq is nonempty so long as P is SC-rationalizable; in other

words, that there is a solution to (a.13) and (a.14). This requires a short proof using the Basic

Theorem. The result also tells us that Ppxq is, in a sense, increasing with respect to first order

stochastic dominance.2

Proposition A.3. Suppose P “ tPp¨|xquxP pX is SC-rationalizable. Then Ppxq is nonempty for any

x P X and has the following monotone property: if px ą x, then for any Pp¨|xq P Ppxq there is

Pp¨|pxq P Pppxq such that Pp¨|pxq ěFSD Pp¨|xq and for any Pp¨|pxq P Pppxq there is Pp¨|xq P Ppxq such

that Pp¨|pxq ěFSD Pp¨|xq.

Proof. If P is SC-rationalizable, then we know from the proof of Theorem 2 that it can be

rationalized by some distribution PΠ with a finite support in SC. For each Π in that sup-

port, the Basic Theorem tells us that NEpΠ,xq is nonempty. Choose npΠq in NEpΠ,xq. Let

πpyq “ tΠ P SC : npΠq “ yu. Then the distribution on Y where Ppy|xq “
ş

πpyq
dPΠ for all y P Y

is in Ppxq and so Ppxq is nonempty.

We show that if Pp¨|xq P Ppxq, then there is Pp¨|pxq P Pppxq such that Pp¨|pxq ěFSD Pp¨|xq if

px ą x. The (omitted) proof of the other case is similar. Since Pp¨|pxq P Pppxq, there is a distribution

PΠ with a finite support in SC and an equilibrium selection rule λ̄ p¨|Π,xq (for x P txu Y X) that

rationalizes P and satisfies Ppy|xq “
ş

λ̄ py|Π, x̄q dPΠ for all y P Y. Let λ̂ be a new equilibrium

selection rule where λ̂ p¨|Π,xtq “ λ̄ p¨|Π,xq for x P pX and, in the case where x “ x, we define λ̂

in the following manner: for each y1 in NEpΠ,xq for which λ̄py1|Π,xq ą 0, choose y2 in NEpΠ, pxq

such that y2 ě y1 and set λ̂py2 | Π, pxq “ λ̄py1|Π,xq. We know that y2 exists because the set of

pure strategy Nash equilibria of a game with strategic complements admits a largest element and a

smallest element and both are increasing with x (see Milgrom and Roberts (1990)). For any y P Y

not assigned a positive probability in this manner, set λ̂py|Π, pxq “ 0. In this way, the distribution

given by Ppy|pxq “
ş

λ̂ py|Π, pxq dPΠ for all y P Y is in Pppxq and first order stochastically dominates

Pp¨|xq. QED

2 For two distributions ν and θ on a Euclidean space, we say that ν first order stochastically dominates θ if
ş

C
dνpyq ě

ş

C
dθpyq for all measurable sets C that are upward comprehensive, i.e., if y P C then z P C for any z ě y.

It is known that this holds if and only if
ş

fpyqdνpyq ě
ş

fpyqdθpyq for all increasing real-valued functions f .
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A4. Matrix representation of B˚

We outline how we obtain the matrix characterization of B˚ referred to in Section 3.4, which is in

turn needed to implement the estimation we describe in Section 4.2.

Significance of strategic interaction. We need to construct the set of group types, B˚, for

which a subset of agents, N 1 Ă N , have payoff functions that do not depend on the strategies of

any other agent. As explained in Section 3.4, these group types can be characterized by a stronger

version of the RM axiom: for each i P N 1, y2 P Bpx2q, y1 P Bpx1q, and x2
i ą x1

i ùñ y2
i ě y1

i . The

standard RM axiom is required for the other agents. In this case, the matrix C˚ and the column

vector θ˚ that characterize B˚ can be constructed similarly to C and θ in the case of B (as provided

in Proposition 2). We only need to incorporate in the definition of Rpy,xq the variation of the RM

axiom.

Probability bounds for equilibrium actions. For a given y P Y and x P X, let B˚ be the set

of group types that can support y as a Nash equilibrium action profile at x “ x. As referred to in

Section 3.4, a group type B is contained in B˚, if and only if the (possibly) multi-valued group type

B : pXY txu Ñ Y defined as follows obeys the RM-axiom: let B be so that Bpxq “ Bpxq Y tyu and

Bpxq “ Bpxq for every x P pXztxu. (Note that Bpxq “ tyu, if x R pX.) Using the vector notation of

B we can subsequently define the set Rpy,xq as follows

Rpy,xq “

!

py,xq P Y ˆ pX : bpy,xq “ 1 ùñ bpy,xq “ 0 for all b P B˚
)

.

Recalling the definition of the RM-axiom, py,xq P Rpy,xq, if and only if there exists an agent i

such that py´i, xiq ą păqpy´i, xiq and yi ă pąqyi.

Using this, in turn, define a vector ζ P t0, 1u|Yˆ pX| such that for each py,xq P Y ˆ pX, ζpy,xq “

1 ppy,xq P Rpy,xqq. Then, let C˚ be a p|Y ˆ pX| ` 1q ˆ |Y ˆ pX|-matrix such that the first |Y ˆ

pX| ˆ |Y ˆ pX|-matrix equals the matrix C constructed in the proof of Proposition 2 (in the main

paper), and the additional p|Y ˆ pX| ` 1q-th row is equal to ζ (defined above). Finally, let the

p|Y ˆ pX| ` 1q-dimensional column vector θ˚ be such that θ˚ “ pθ, 0q, where θ is as defined in the

proof of Proposition 2 in the main paper. It follows that, a given group type b P B is in the set

B˚ if and only if C˚b ď θ˚. This inequality ensures that Cb ď θ, which is equivalent to b obeying

RM axiom, and ζ ¨ b ď 0, which is in turn equivalent to b not containing a behavior contradicting
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py,xq in terms of the RM axiom on the extended domain.

A5. Omitted details from statistical tests

A5.1. Key lemmata

The bootstrap procedures with tightening described in Kitamura and Stoye (2018) (and its vari-

ations in Smeulders et al. (2021), Deb et al. (2023), and ours) largely depend on representation

result in Kitamura and Stoye (2018) (Lemma 4.1 in their paper). It is worth restating this result

as well as a modified version by Smeulders et al. (2021) here, given its relevance to what we are

doing.

Let B be an mˆn matrix and denote its set of column vectors by B. The convex cone generated

by B is the set

A “ tBτ : τ ě 0u, (a.15)

which is referred to as the V-representation (meaning Vertex) of A. By Minkowski-Weyl duality, A

has an alternative representation, called the H-representation (meaning Hyperplane), where

A “ tp P Rm : Dp ď 0u (a.16)

for some l ˆ m matrix D. In the constraints in (a.16), some are inequality conditions while others

are in fact equality conditions. To distinguish them, we let

D “

»

–

Dď

D“

fi

fl ,

where Dď and D“ correspond respectively to the inequality and equality constraints. Abusing

notation, we sometimes write d P Dď when d is a row vector of Dď, and the same goes for D“.

Kitamura and Stoye (2018) (in their Lemma 4.1) show that the tightening of a convex cone in

the V-representation is inherited by the H-representation in the following sense.

Lemma A.1. Let A be a convex cone represented as (a.15) and (a.16) using the matrices B and D.
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For κ ą 0, define Aκ such that

Aκ “

!

Bτ : τ ´

´κ

n

¯

In ě 0
)

, (a.17)

where In is the n-dimensional vector of 1’s. Then, Aκ can be represented as

Aκ “
␣

p P Rm : Dďp ď ´κu and D“p “ 0
(

, (a.18)

with u being a strictly positive vector.

This lemma ensures the dual representation (a.18) using the same Dď and D“ as the H-

representation (a.16) of the original convex cone A.

Since we adopt the computation procedure based on column generation, we need a version of

Lemma A.1 where strictly positive weights are required only for a specific subset of B. The following

result is found in Smeulders et al. (2021).

Lemma A.2. Let A be defined as (a.15) and (a.16), and suppose that B1 Ă B satisfies the following

property: for every d P Dď, there exists some b P B1 such that d ¨ b ă 0. Then, for each κ ą 0, the

set

A1
κ “

"

Bτ : τb ě
κ

|B1|
for all b P B1 and τb ě 0 for all b P BzB1

*

(a.19)

can be represented as

A1
κ “

␣

p P Rm : Dďp ď ´κu1 and D“p “ 0
(

, (a.20)

with u1 being a strictly positive vector.

As in the case of (a.18), the H-representation (a.20) is obtained by using exactly the same matrix

D “t rDď,D“s as (a.16). In the rest of this section, we rely on this lemma instead of Lemma A.1.

It matters how we obtain the set B1 obeying the requirement in the lemma, which could depend on

the targeted application. A procedure for constructing a suitable B1 in our game setting is provided

in the next subsection.
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A5.2. Supplementary notes for Section 4.1

Validity of critical value. Let B be the matrix of which column vectors correspond to (single-

valued) group types obeying RM axiom. This matrix has |B| columns of length |Yˆ pX| (recall that

the set of group types obeying RM axiom is denoted by B). As we pointed out in Section 4.1, our

null hypothesis that p is in the set of SC-rationalizable distributions defined as

PSC “
␣

Bτ : τ P ∆B( (a.21)

is equivalent to p being in the cone A “ tBτ : τ ě 0u. To show the validity of the critical value,

Kitamura and Stoye (2018) introduced the following assumptions on data generating process (which

we first introduced in Section 4 of the main paper).

Assumption 1. Let Nx be a number of observations with covariates x, and N “
ř

xP pX Nx. Then,

for each x P pX, Nx

N
Ñ ρx as N Ñ 8, where ρx ą 0.

Assumption 2. The empirical distribution is obtained from N repeated cross sections of random

samples for each realization of covariates x.

Kitamura and Stoye (2018) further impose another condition to guarantee the stable behavior

of the test statistic. We now explain this condition in the context of our model. Suppose an

action profile y is picked at random for each realization of x from data. This random vector

b P t0, 1u|Yˆ pX| can be interpreted as a single-valued group type; clearly, Erbs is equal to the

empirical choice frequency. By the equivalence between (a.15) and (a.16), for each realization of b,

we have b P B ðñ Db ď 0. Rows of D correspond to the restrictions from RM axiom; some

of them are satisfied by definition for any b representing a single-valued group type (such as the

sum-up condition for each x), while others are nontrivial restrictions. Let KR be the set of indices of

rows corresponding to the latter restrictions in Db ď 0, and let g “t pg1, g2, ..., glq “ Db. Kitamura

and Stoye (2018) impose the following condition on g.

Condition 1. For each k P KR, varpgkq ą 0, and E
”

|gk{
a

varpgkq
2`c1

|

ı

ă c2 hold for some positive

constants c1 and c2.

With these assumptions in place, the validity of our bootstrap procedure is ensured. Indeed,

suppose that
?
Npq ´ pq

d
ÝÑ Np0, Sq, and let Ŝ consistently estimate S. With η˚ defined in (14),
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let η̃˚ be given by

η̃˚ “ η˚ `
1

?
N
Np0, Ŝq

and let

J̃N :“ min
ηPA1

κN

Npη̃˚ ´ ηq ¨ pη̃˚ ´ ηq (a.22)

“ min
Dďηď´κN ū1

D“η“0

Npη̃˚ ´ ηq ¨ pη̃˚ ´ ηq. (a.23)

Note that Dď, D“ and u1 are the matrices and vector providing the representation in (a.20) for

κ “ κN , where κN is a tuning parameter which obeying κN Ó 0 and
?
NκN Ò 8 as N Ñ 8. Then

we have the following result, which says (in essence) that the distribution of J̃N approximates the

distribution of the test statistic JN and ensures the validity of the critical value in Section 4.1 of

the main paper.

Theorem A.2. Choose κN ą 0 such that κN Ó 0 and
?
NκN Ò 8 as N Ñ 8 and suppose that

B1 Ă B satisfies the requirement in Lemma A.2. Then, under Assumptions 1 and 2, it holds that

lim inf
NÑ8

inf
pPPXA

PrpJN ď ĉ1´αq “ 1 ´ α, (a.24)

where P is the set of all population distributions p (i.e. p P r0, 1s|Yˆ pX| such that
ř

yPY py,x “ 1 for

each x P pX) obeying Condition 1, and ĉ1´α is the 1 ´ α quantile of J̃N with 0 ď α ď 1
2
.

The result stated here is found in Smeulders et al. (2021) and justifies the bootstrap procedure

we use, where strictly positive weights are required only for the elements of B1. This result is

a modification of Theorem 4.2 in Kitamura and Stoye (2018); that theorem justifies a bootstrap

procedure which requires positive weights on all elements of B.

Construction of the set B1. In the main paper, we require that B1 contains a basis of the space

spanned by B, since it works as a sufficient condition for the requirement in Lemma A.2.

Lemma A.3. Suppose that B1 contains a basis of the space spanned by B, and let Dď be the same

as Lemma A.2. Then, for each d P Dď, there exists some b P B1 such that d ¨ b ă 0.
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Proof. By way of contradiction, suppose that there exists some d P Dď such that d ¨ b “ 0 for all

b P B1. Since B1 contains all linear basis of B, this implies that d ¨ p “ 0 for all p P A1
κ. However,

this means that d P D“, and since Dď X D“ “ H, this is a contradiction. QED

A possible procedure for obtaining B1 is as follows. First, recall that by Proposition 2 in the

main paper, a group type is in B if and only if it solves the integer programming problem Cb ď θ.

Let B2 be some linearly independent set of group types in B (for example, taking any singleton

set as B2, it is linearly independent). We could check the existence of group types in B which are

linearly independent of the ones in B2 by checking if there is b P B (equivalently, that solve Cb ď θ)

and a real-valued vector w such that B2 ¨ pb ´ B2wq “ 0 and b ‰ B2w, where B2 refers to the

matrix made out of the vectors in B2. If such a group type b can be found, then we add it to B2

and repeat the procedure. This process will stop when there are no vectors in B which are linearly

independent of the ones in B2, at which point we obtain a basis for B (and hence, we adopt the

resulting B2 as B1). Notice that while it could be practically hard to completely list the elements of

B, listing B1 is less demanding, since the dimension of this space grows a lot more slowly than the

number of actions and covariate values.3

Improvements on the testing procedure. We explain two simple modifications to the column

generation method that could improve the computation time.

Column generation involves progressively adding single-crossing group types to improve on JN,0.

This involves solving (18) (in the main paper), which can be hard if |pX| is large. In fact, to improve

on JN,0, it suffices to find b P B such that pq ´ η0q ¨ pb ´ η0q ą 0. In our program for the empirical

application in Section 5, we impose a time limit for solving (18) and use the best feasible solution

found within that time.4 It is only when this solution satisfies pq´η0q¨pb´η0q ď 0 that we continue

to solve the maximization problem exactly.

The final step in our statistical test involves calculating the bootstrap test statistic J
prq

N and the

p-value. As noted by Smeulders et al. (2021), computation time can be further reduced by not

3 It is straightforward to check that the dimension of the space spanned by the set of all logically possible group
types is precisely |Y ˆ pX| ´ |Y| ` 1 and so obviously the dimension of the space spanned by B can be no higher.
In fact, the span of B coincides with that of the set of all logically possible group types, even though B is a proper
subset.

4 Using Rglpk package on R, our program gives 0.2 seconds for solving (18) at each repetition. This constraint

can be binding when pX is large, leading to a large integer programming problem.
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always calculating the value of J
prq

N exactly. Indeed, it suffices to determine whether each J
prq

N is

larger or smaller than the critical value JN . Thus, when calculating J
prq

N via column generation, we

can terminate the procedure once a value of J
prq

N,0 becomes lower than JN .

A5.3. Supplementary notes for Section 4.2

Validity of critical value. Recall that for a given β P p0, 1q and B˚ Ă B, the null hypothesis is

that the data set q is a sample from some element of the set

PSCpβ;B˚q “

#

Bτ : τ P ∆B and
ÿ

bPB˚

τb ě β

+

. (a.25)

Assuming that we have calculated the test statistic JNpβq, the next step is to construct the bootstrap

sample. To do this, we first construct a suitable tightening for the domain of τ , which is denoted

by ∆B
κN

pβ;B˚q in the main paper. We set

∆B
κN

pβ;B˚q “

"

τ P ∆B : τb ě
βκN

|B1 X B˚|
for b P B1 X B˚ and τb ě

p1 ´ βqκN

|B1zB˚|
for b P B1zB˚

*

,

(a.26)

and

PSC
κN

pβ;B˚q “

#

Bτ : τ P ∆B
κN

pβ;B˚q and
ÿ

bPB˚

τb ě β

+

, (a.27)

where B1 must be chosen to satisfy the requirement in Lemma A.2 and also that B1 XB˚ and B1zB˚

are nonempty sets. We can then calculate

η˚pβq “ argmin
ηPPSC

κN
pβ;B˚q

Npq ´ ηq ¨ pq ´ ηq “ argmin
τP∆B

κN
pβ;B˚q

ř

bPB˚ τběβ

Npq ´ Bτq ¨ pq ´ Bτq. (a.28)

(which is the counterpart to η˚ in the statistical test presented in Section 4.1). For each r “

1, 2, ..., R, we can generate a bootstrap sample qprq using the standard nonparametric bootstrap

re-sampling from η˚pβq and re-center this to pqprq “ pqprq ´qq ` η˚pβq. We define the bootstrap test
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statistic J
prq

N pβq by

J
prq

N pβq :“ min
ηPPSC

κN
pβ;B˚q

Nppqprq ´ ηq ¨ ppqprq ´ ηq “ min
τP∆B

κN
pβ;B˚q

ř

bPB˚ τběβ

Nppqprq ´ Bτq ¨ ppqprq ´ Bτq. (a.29)

With the empirical distribution of J
prq

N pβq we can calculate the p-value and determine if the null

hypothesis is rejected.

To justify this procedure, we rely on the argument in Deb et al. (2023), with a modification

to account for the fact that our tightening procedure is different because we apply the tightening

only to elements of B1 rather than all the elements of B (see (a.26)). (Recall that we allow for the

possibility that B is not computed in its entirety.)

Suppose that
?
Npq ´ pq

d
ÝÑ Np0, Sq, with Ŝ being a consistent estimator for S. Define η̃˚pβq

by

η̃˚pβq “ η˚pβq `
1

?
N
Np0, Ŝq

and let

J̃Npβq “ min
ηPPSC

κN
pβ;B˚q

Npη̃˚pβq ´ ηq ¨ pη̃˚pβq ´ ηq (a.30)

“ min
τP∆B

κN
pβ;B˚q

ř

bPB˚ τběβ

Npη̃˚pβq ´ Bτq ¨ pη̃˚pβq ´ Bτq. (a.31)

The following result says (in essence) that the distribution of J̃Npβq approximates the distribution

of the test statistic JNpβq and justifies our calculation of the critical value.

Theorem A.3. Choose κN ą 0 such that κN Ó 0 and
?
NκN Ò 8 as N Ñ 8 and suppose that

B1 Ă B satisfies the requirement in Lemma A.2 and B1 XB˚ and B1zB˚ are nonempty. Then, under

Assumptions 1 and 2, it holds that

lim inf
NÑ8

inf
pβ,pqPF

PrpJNpβq ď ĉ1´αq “ 1 ´ α, (a.32)

where F “
␣

pβ,pq : β P p0, 1q,p P P X PSC
(

and ĉ1´α is the 1´α quantile of J̃Npβq with 0 ď α ď 1
2

(P is defined as in Theorem A.2 and PSC is defined in (a.21)).

Proof. The proof proceeds in the same way as the proof of Theorem 4 in Deb et al. (2023), with
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some adjustments that we explain next. A key step in the proof of Deb et al. (2023) is to obtain

the H-representation of their versions of PSCpβ;B˚q and PSC
κN

pβ;B˚q. For us to use their proof, we

first need to obtain H-representations of these two sets, as we have defined it (by (a.25) and (a.27)

respectively). Indeed, we claim that

PSCpβ;B˚q “

!

p : Dp ď 0, rDp ď vpβq,Exp “ 1

)

, and (a.33)

PSC
κN

pβ;B˚q “

!

p : Dďp ď ´κNupβq,D“p “ 0, rDp ď vpβq,Exp “ 1

)

(a.34)

where

(i) the set tp : Dp ď 0u is the H-representation of the cone tBτ : τ ě 0u, with Dď and D“

respectively corresponding to the inequality and equality constraints;

(ii) the set tp : Dďp ď ´κNupβq and D“p “ 0u is the H-representation of

"

Bτ : τb ě
βκN

|B1 X B˚|
for b P B1 X B˚, τb ě

p1 ´ βqκN

|B1zB˚|
for b P B1zB˚, and τ ě 0

*

;

(iii) the set tp : rDp ď vpβqu coincides with tBτ :
ř

bPB˚ τb ě β, τ P R|B|
` u; and

(iv) Exp “ 1 corresponds to the adding-up condition of choice frequencies at each covariate x.

Note that 1 stands for the vector of 1’s.

The existence of the representation in (i) is immediate from Minkowski-Weyl duality and the condi-

tion (iv) is also clear. Condition (ii) follows from Lemma A.2.5 There exists rD and vpβq such that

condition (iii) holds since tBτ :
ř

bPB˚ τb ě β, τ P R|B|
` u is obviously a polyhedron (in the sense of

Ziegler (1995)).

With these representations of PSCpβ;B˚q and PSC
κN

pβ;B˚q, we obtain the result by (essentially)

mimicking the proof in Deb et al. (2023). Note that the counterpart to (iii) in their proof is defined

by the equality rDp “ vpβq, since they define PSCpβ;B˚q and PSC
κN

pβ;B˚q by using
ř

bPB˚ τb “ β,

rather than
ř

bPB˚ τb ě β. As a result of this, some equalities to need to be converted to inequalities

when mimicking their proof, but this can be done without introducing difficulties. QED

5In applying Lemma A.2, it does not matter even if the lower bounds on τb vary across b P B1.
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Summary. For a fixed B˚ Ă B and β P p0, 1q, we provide a step-by-step procedure for obtaining

the p-value for the null hypothesis described in (19). The upper bound of β is obtained through

binary search.

I Obtain the test statistic JNpβq defined by (20) (in the main paper) as follows:

(i) Based on B0, solve the minimization problem (21) to get JN,0pβq and η0pβq.

(ii) Check the value of (23). If it is strictly positive, then update B0 by adding a solution of

(23) and go to (i).6 Else, adopt the resulting JN,0pβq as JNpβq and Stop.

II Obtain the tightened estimator η˚pβq in (a.28) as follows:

(i) Calculate B1 Ă B obeying the requirements in Theorem A.3.7

(ii) Set B1 as B0, and run the procedure in Step I, replacing ∆B0 in problem (21) with

∆B0
κN

pβ;B˚q “

!

τ P ∆B0 : τb ě
βκN

|B1 X B˚|
for b P B1 X B˚

and τb ě
p1 ´ βqκN

|B1zB˚|
for b P B1zB˚

)

.

When it stops, the resulting η0pβq is η˚pβq.

III Obtain the bootstrap test statistics J
prq

N pβq defined in (a.29) for r “ 1, 2, ..., R:

(i) Obtain the re-centered bootstrap sample pqprq “ pqprq ´ qq ` η˚pβq.

(ii) Set B1 as B0 and run the procedure in Step I replacing q and ∆Bpβ;B˚q in problem (21)

with pqprq and ∆B0
κN

pβ;B˚q, respectively. When it stops, the resulting JN,0pβq is J
prq

N pβq.

IV Lastly, calculate the p-value p “ #tJ
prq

N pβq ą JNpβqu{R.

6Note that, in this case, a solution of (23) is a pair of group types tb˚,bu described in Proposition 3.
7Theorem A.3 requires B1 to satisfy the requirements in Lemma A.2, B1 X B˚ ‰ H, and B1zB˚ ‰ H. If B1,

constructed as in the preceding subsection, does not satisfy the latter two requirements, then we need to (manually)
add some group types to B1 so that they are satisfied. (If a set satisfies the requirements of Lemma A.2, adding more
types to that set will not upset the requirements.) In practice, we find that this problem does not arise because we
would have accumulated (through performing the statistical test of the model using column generation) a very large
subset of B satisfying the requirements of Lemma A.2. We could then choose this set to be B1; it is likely that this
set would satisfy B1 X B˚ ‰ H and B1zB˚ ‰ H.
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A6. Additional empirical analysis

A6.1. Finer discretization of covariates

In the main paper, we initially discretize each covariate into two values, following Kline and Tamer

(2016). Specifically, the market presence variables (MPLCC and MPOA) and the market size variable

MS take value 1 if their actual values are above median amongst observed data. In order to show

that our test can actually deal with a larger model, we also implemented our test with all these

covariates being discretized into four values using quartile points. As we pointed out in the main

paper, the data set passes the SC-rationalizability test with the binary discretization, but it fails

with a quartile discretization.

To see the effect of finer discretization one by one, we consider the cases in which (i) MPLCC

and MPOA are split into four values, while MS is kept binary, and (ii) MS is split into four values,

while MPLCC and MPOA are kept binary. We obtain that the former is rejected with p-value 0,

while the latter is supported with p-value 0.412. We also implement our test with other types of

discretizations. The results are summarized in Table A.3.8 These results imply that our behavioral

hypothesis is vulnerable to finer discretizations of the market presence variables, while it is (to some

extent) robust to finer discretizations of the market size variable.

When covariates are more finely discretized, the number of observations in each bin becomes

small, which makes the estimation noisier. Given this, we use choice distributions for x’s with

more than or equal to 50 observations.9 In other words, for each pattern of discretization, we let

pX “ tx P X : Nx ě 50u , where Nx is the number of observations with covariates x. The size of pX

in each case is also reported in Table A.3. The results here also imply that our test still have good

testing power even with relatively small size of pX. For example, for the case of 6 ˆ 6 ˆ 6, we only

use observations for 46 types of realization of covariates out of 216 possible realization of covariates,

but the hypothesis of SC-rationalizablity is refuted with p-value being equal to 0.

Lastly, to compare the results of our test with that of Kline and Tamer (2016), we also implement

their parametric estimation for some of the discretization patterns displayed in Table A.3. (See

8As seen from the table, not all results are listed and the results for other combinations are available from the
authors. Also, one may implement them using our R program.

9The conclusions of the tests (pass/fail with 5% significance level) in Table A.3 remains the same even if we let
pX “ tx P X : Nx ě 100u, except for the cases with 6 ˆ 6 ˆ 4 and 6 ˆ 6 ˆ 6. In those cases, the test fails to reject the

data, possibly because pX becomes too small relative to the original size of X, which weaken the testing power. For
example, in 6 ˆ 6 ˆ 4, |pX| “ 12, when |X| “ 144.
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MPLCC ˆ MPOA ˆ MS |pX| p-value

2 ˆ 2 ˆ 2 8 0.138
2 ˆ 2 ˆ 3 12 0.195
2 ˆ 2 ˆ 4 16 0.412
2 ˆ 2 ˆ 6 24 0.195
2 ˆ 2 ˆ 8 32 0.020
3 ˆ 3 ˆ 2 18 0.000

MPLCC ˆ MPOA ˆ MS |pX| p-value

3 ˆ 3 ˆ 3 27 0.017
4 ˆ 4 ˆ 2 32 0.000
4 ˆ 4 ˆ 4 60 0.000
6 ˆ 6 ˆ 2 65 0.000
6 ˆ 6 ˆ 4 70 0.000
6 ˆ 6 ˆ 6 46 0.000

Table A.3: Tests under various discretization

Section A1 for more details on Kline and Tamer’s estimation procedure.) While their approach is

mainly developed for inference of partially identified parameters, they point out that it could also be

used for “specification testing.” In their procedure the empirical choice frequencies are repeatedly

sampled and, for each sample, one could derive the set of model parameters. Kline and Tamer point

out that the frequency with which the identified set (of parameters) is nonempty could be thought

of as a form of specification testing. The results obtained via this procedure are broadly consistent

with ours. Following Kline and Tamer, we created 251 random samples from the empirical choice

frequencies (which we call Q); the frequency of obtaining a nonempty set of estimated coefficients in

these samples is (i) 1 for 2ˆ2ˆ2, (ii) 0.928 for 2ˆ2ˆ3, and (iii) 0 for 3ˆ3ˆ3 (at a tolerance level

of 0.075). In particular, this approach would conclude that the parametric model is misspecified in

case (iii), which is consistent with the result from our test since it rejects the nonparametric model

in this case.

A6.2. Lower probability bounds for equilibrium actions

In Section 5 of the main paper, as an application of counterfactual analysis discussed in Section 3.4,

we estimated the maximum probability of a given action profile y being an equilibrium action at

the covariate x P pX. We motivated this exercise by considering a policy maker who could influence

the equilibrium selection mechanism but not player payoffs and asked the extent to which she could

shift the action profile towards the outcome y. In formal terms, we considered the weight on the

set

B˚ “ tB P B : there is Π P SC that rationalizes B such that y P NEpΠ,xqu
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(see Section 3.4, Application 2). B˚ is obviously a superset of (and possibly a strict superset of)

B0 “ tB P B : Bpxq “ yu

(the set of types that actually play y at x). What we refer to as maxPrry P NEpΠ,xqs in Section

5 (see also Table A.4 below) is the upper limit of the confidence interval on

ÿ

BPB˚

τB

subject to pτBqBPB solving the model (which we can estimate by the procedure set out in Section

4.2). This represents the most optimistic estimate of what the policy maker can do, not only because

it assumes the greatest possible weight on B˚ but also because it assumes (given the definition of

B˚) that every group type which can have payoff functions for which y is an equilibrium, actually

does have such payoff functions.

It is also interesting to investigate the most conservative assessment of what the policy maker

can do, assuming that equilibrium selection rules are freely manipulable. This is given by the weight

on the set

B: “ tB P B : y P NEpx,Πq for any Π P SC that rationalizes Bu . (a.35)

This is the set of types for which y must be an equilibrium at the covariate x. Obviously,

B0 Ď B: Ď B˚.

Below, we explain how we may characterize B: in the case of the application in Section 5. This

allows us to calculate the lower limit of the confidence interval on

ÿ

BPB:

τB,

subject to pτBqBPB solving the model, which we denote by minPrry P NEpΠ,xqs (see also Table

A.4 below); it is the most conservative estimate of far the policy maker can shift the equilibrium
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towards y without manipulating payoffs.

Claim A.1. Let x P pX. When y “ pN,Eq, the group type B is in B: if and only if B P B and either

(i) Bpxq “ pN,Eq or

(ii) Bpxq “ pE,Nq and there exists some x1 “ px1
1, x

1
2q and x2 “ px2

1, x
2
2q with x1

1 ě x1 and x2
2 ď x2

for which Bpx1q “ pN,Eq and Bpx2q “ pN,Eq.10

Similarly, when y “ pE,Nq, the group type B is in B: if and only if B P B and either

(i’) Bpxq “ pE,Nq or

(ii’) Bpxq “ pN,Eq and there exists some x1 “ px1
1, x

1
2q and x2 “ px2

1, x
2
2q with x1

1 ď x1 and x2
2 ě x2

for which Bpx1q “ pE,Nq and Bpx2q “ pE,Nq.

Proof. We only prove the case of y “ pN,Eq, since the other case can be shown in a similar vein. It

is clear that if B obeys (i), then any Π P SC rationalizing it must support pN,Eq as an equilibrium

action at x. Suppose that B obeys (ii). Then, Bpx1q “ pN,Eq implies that N P BR1pE, x1
1q, and

the monotonicity of best response implies that N P BR1pE, x1q holds. Also, Bpx1q “ pN,Eq and

the monotonicity implies that E P BR2pN, x2q, and hence, for any Π P SC rationalizing B, pN,Eq

must be supported as an equilibrium action at x “ px1, x2q.

Conversely, if neither (i) nor (ii) holds, B P B can be rationalized by some Π P SC for which

pN,Eq is not an equilibrium action at x. It is trivial that Bpxq “ pN,Nq or pE,Eq, then pN,Eq

cannot be supported as an equilibrium action, since pN,Nq and pE,Eq cannot be a part of multiple

equilibria in our setting. When Bpxq “ pE,Nq and player 1 never plays N for any x1
1 ě x1, one

can find his (single-crossing) payoff function so that Π1pE, y2, x1q ą Π1pN, y2, x1q for y2 P tE,Nu;

indeed, our construction of the payoff function in the proof of Theorem 1 would satisfy this property.

Similarly, when Bpxq “ pE,Nq and player 2 never plays E for any x1
2 ď x2, one can find his (single-

crossing) payoff function so that Π2pN, y1, x2q ą Π1pE, y1, x2q for y1 P tN,Eu. By doing so, a profile

of payoff function Π “ pΠ1,Π2q does not support pN,Eq as an equilibrium action at x. QED

For each x P pX and y P tpN,Eq, pE,Nqu, we would like to estimate the minimum possible

fraction of group types in B:. In order to apply the procedure in Section 4.2 of the main paper, we

estimate the maximum possible fraction on B:: :“ BzB:, where B:: corresponds to the set of types

10In fact, the crucial part of condition (ii) is that player 1 chooses N when x1
1 ě x̄1 while player 2 chooses E

when x2
2 ď x̄2. However, Bpx1q “ pN,Nq and Bpx2q “ pE,Eq are excluded by the RM axiom, and hence it suffices

to consider the situation described in the statement.
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for which y may not be an equilibrium action at x, and subtract it from 1. Similar to the case of

maximum probability bounds (dealt with in Section A4), we employ the matrix characterization of

group types in B::. Specifically, we shall construct C:: and θ:: such that a group type b P B:: if

and only if C::b ď θ::.

Construction of C:: and θ::. For each y P tpN,Eq, pE,Nqu and x P pX, define the matrix C:: as

follows. Let us first note that the size of this matrix is equal to
´

p|Y ˆ pX| ` 1q ` Kpy,xq

¯

ˆ|Yˆ pX|,

where

Kpy,xq “ #tx1 P pX : x1
1 ě xiu ˆ #tx2 P pX : x2

2 ď x2u, if y “ pN,Eq, (a.36)

“ #tx1 P pX : x1
1 ď x1u ˆ #tx2 P pX : x2

2 ě x2u, if y “ pE,Nq. (a.37)

We set the first |Y ˆ pX| ˆ |Y ˆ pX|-submatrix as the matrix C (for characterizing RM group types)

constructed in the proof of Proposition 2. The p|Y ˆ pX| ` 1q-th row is for checking condition (i)

in Claim A.1, and the remaining Kpy,xq rows are for checking condition (ii) in Claim A.1. When

y “ pN,Eq, this part of the matrix is constructed as follows (the case of y “ pE,Nq is similar):

1. In the p|Y ˆ pX| ` 1q-th row, the coordinate corresponding to ppN,Eq,xqq takes value 1, and

others are set to 0.

2. Each of remaining Kpy,xq rows should be related to each combination px1,x2q for which

x1
1 ě x1 and x2

2 ď x2. Regarding each row as such, the coordinate corresponding to ppE,Nq,xq

is set to 1, the coordinates corresponding to ppN,Eq,x1q and ppN,Eq,x2q are set to 0.1, and

others are 0.

Finally, the vector for the RHS, θ::, is defined as the
´

p|Y ˆ pX| ` 1q ` Kpy,xq

¯

dimensional column

vector, of which the first |Y ˆ pX|-dimensional subvector is equal to the vector θ constructed in the

proof of Proposition 2, the p|Y ˆ pX| ` 1q-th element is 0, and all other elements are set to 1.1.

Estimates of minPrry P NEpΠ,xqs. Given the matrix representation we can estimate the greatest

possible weight on B:: using the procedure in Section 4.2 (and Appendix A5.3), and thus the lowest

possible probability for y to be an equilibrium action at x; formally, we obtain the lower limit of

the confidence interval on
ř

BPB: τB. This is denoted by minPrry P NEpΠ,xqs in Table A.4. Notice

that there is not much difference between minPrrpN,Eq P NEpΠ,xqs and the empirical frequency
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pMPLCC ,MPOA,MSq p0, 0, 0q p0, 1, 0q p1, 0, 0q p1, 1, 0q

Action profile pN,Eq pE,Nq pN,Eq pE,Nq pN,Eq pE,Nq pN,Eq pE,Nq

maxPrry P NEpΠ,xqs 0.699 0.544 0.815 0.503 0.503 0.644 0.558 0.555

minPrry P NEpΠ,xqs 0.658 0.115 0.784 0.154 0.385 0.234 0.512 0.121

Observed Prob. 0.682 0.006 0.785 0.003 0.367 0.253 0.542 0.050

pMPLCC ,MPOA,MSq p0, 0, 1q p0, 1, 1q p1, 0, 1q p1, 1, 1q

Action profile pN,Eq pE,Nq pN,Eq pE,Nq pN,Eq pE,Nq pN,Eq pE,Nq

maxPrry P NEpΠ,xqs 0.841 0.616 0.913 0.496 0.485 0.661 0.523 0.497

minPrry P NEpΠ,xqs 0.806 0.220 0.881 0.237 0.385 0.278 0.484 0.106

Observed Prob. 0.832 0.001 0.910 0.000 0.326 0.306 0.501 0.021

Table A.4: Probability bounds for equilibrium action profiles

of pN,Eq.11 On the other hand, minPrrpE,Nq P NEpΠ,xqs is appreciably larger than the empirical

frequency of pE,Nq at some covariate values, for example, x “ p0, 0, 1q.
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